Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

418 results about "Signal band" patented technology

Residue-compensating A/D converter

An analog-to-digital converter system [50D] processing an input signal, g, which can be either a discrete-time or a continuous-time signal. A first quantizer [154] generates a first digital signal, d0(k), representing the sum of the input signal, g, and a dithering signal, y0. A digital-to-analog converter [156] generates an analog feedback signal, alpha, representing accurately the first digital signal, d0(k). The DAC [156] may be linearized by the use of mismatch-shaping techniques. A filter [158] generates the dithering signal, y0, by selectively amplifying in the signal band the residue signal, r0, defined as the difference of the input signal, g, and the analog feedback signal, alpha. Optional signal paths [166][168] are used to minimize the closed-loop signal transfer function from g to y0, which ideally will be zero. An analog compensation signal, m0, which is described by a well-controlled relationship to the residue signal, r0, is extracted from the filter [158]. Ideally, the closed-loop signal transfer function from g to m0 will be zero, or at least small in the signal band. A second quantizer [160] converts the analog compensation signal, m0, into a second digital signal, dm0(k). The two digital signals, d0(k) and dm0(k), are filtered individually and then added to form the overall output signal, dg(k). The second digital filter [164] has a low signal-band gain, which implies that the sensitivity to signal-band errors caused by the second quantizer [160] will be low. The output signal, dg(k), is a highly-accurate high-resolution representation of the input signal, g. Circuit imperfections, such as mismatch, gain errors, and nonlinearities, will cause only noise-like errors having a very low spectral power density in the signal band.The invention facilitates the implementation of uncalibrated highly-linear high-resolution wide-bandwidth A/D converters [50D], e.g., for use in digital communication systems, such as xDSL modems and other demanding consumer-market products for which low cost is of the essence.
Owner:ANALOG DEVICES BV

Optical Transmitter and Optical OFDM Communication System

Distortion of a reception signal which is attributable to interference between subcarriers during photoelectric conversion is reduced in an optical OFDM communication system without broadening the signal band. A transmission signal processing unit (100) in a transmitter is provided with a distortion generating circuit (distortion generating unit) (170). A subcarrier signal is utilized as an input signal for the circuit. The distortion generating circuit (170) generates a baseband OFDM signal by means of inverse FFT calculation using the input signal, computes the square of the absolute value of the signal, and restores the subcarrier signal by mean of FFT calculation. Because interference between subcarriers is also included in the signal, the distortion element generated by the interference between the subcarriers can be extracted when the difference from the input signal is found. The signal obtained by subtracting the distortion element from the subcarrier signal, which has been modulated using the original data to be communicated, is used as the transmission signal. The transmission signal is photoelectrically converted with a receiver. The interference between subcarriers generated at this time is smaller than when the aforementioned processing is not performed.
Owner:HITACHI LTD

Online matt Raman amplifier with automatic shutdown and starting and control method thereof

The invention relates to an online matt Raman amplifier with automatic shutdown and starting and a control method thereof. An output end of a pump laser unit group is connected with a pump end of a combiner, a public end of the combiner is connected with a transmission optical fiber, a signal end of the combiner is connected with an input end of a spectro-coupler, the big end of the spectro-coupler is a signal output end, the small end of the spectro-coupler is connected with the public end of a signal band-pass filter, a reflection end of the signal band-pass filter is connected with a detector of noise outside bandwidth, a transmission end is connected with a detector of signal plus the noise within the bandwidth, the signal output ends of the detector of the noise outside the bandwidth and the detector of the signal plus the noise within the bandwidth are respectively connected with a signal input end of a control unit, and the signal output end of the control unit is connected with the pump laser unit group. The method is to realize the signal power detection and the ASE compensation according to the method of detecting the ASE power of the Raman amplifier outside the working bandwidth and the total power of the ASE within the working bandwidth and the signal. The method can accurately detect the actual power of the signal and automatically shut down and start the amplifier according to the level of the signal power.
Owner:GUANGXUN SCI & TECH WUHAN

Series arc detection

A frequency harmonic identifier for detecting series arcs on a power line includes a frequency analyzer for providing the harmonic content of a sensed current signal and a decision logic for comparing a tested signal to at least one reference signal band. The reference signal band or bands may represent a variety of common loads and if the tested signal does not match any of the sets of reference signal bands, then the logic determines the tested signal to be a series arc signal. The frequency harmonic identifier may be provided within a circuit interrupter and may issue a trip signal if the tested signal is determined to be a series arc signal. A method for detecting series arcs includes sensing current on a power line and providing a sensed current signal as an input signal to a frequency harmonic identifier, performing a Fast Fourier Transform on the input signal for providing a tested signal, accessing a storage area storing at least one reference signal band, comparing the tested signal to the at least one reference signal band and determining if the tested signal is a series arc signal through comparison and, if the test signal is a series arc signal, sending a trip signal. A storage medium may also be encoded with machine-readable computer program code for detecting series arcs on a power line, wherein the storage medium includes instructions for causing a computer to implement the method.
Owner:ABB (SCHWEIZ) AG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products