Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

19451 results about "Noise reduction" patented technology

Noise reduction is the process of removing noise from a signal. All signal processing devices, both analog and digital, have traits that make them susceptible to noise. Noise can be random or white noise with an even frequency distribution, or frequency dependent noise introduced by a device's mechanism or signal processing algorithms.

Apparatus and methods for performing electrochemical reactions

The invention is directed to apparatus and methods for delivering multiple reagents to, and monitoring, a plurality of analytical reactions carried out on a large-scale array of electronic sensors underminimal noise conditions. In one aspect, the invention provides method of improving signal-to-noise ratios of output signals from the electronic sensors sensing analytes or reaction byproducts by subtracting an average of output signals measured from neighboring sensors where analyte or reaction byproducts are absent. In other aspects, the invention provides an array of electronic sensors integrated with a microwell array for confining analytes and / or particles for analytical reactions and a method for identifying microwells containing analytes and / or particles by passing a sensor-active reagent over the array and correlating sensor response times to the presence or absence of analytes or particles. Such detection of analyte- or particle-containing microwells may be used as a step in additional noise reduction methods.
Owner:LIFE TECH CORP

Apparatus and method for ranging and noise reduction of low coherence interferometry lci and optical coherence tomography oct signals by parallel detection of spectral bands

InactiveUS20050018201A1Improve signal-to-noise ratioImproves current data acquisition speed and availabilityDiagnostics using lightInterferometersBandpass filteringSpectral bands
Apparatus, method, logic arrangement and storage medium are provided for increasing the sensitivity in the detection of optical coherence tomography and low coherence interferometry (“LCI”) signals by detecting a parallel set of spectral bands, each band being a unique combination of optical frequencies. The LCI broad bandwidth source can be split into N spectral bands. The N spectral bands can be individually detected and processed to provide an increase in the signal-to-noise ratio by a factor of N. Each spectral band may be detected by a separate photo detector and amplified. For each spectral band, the signal can be band p3 filtered around the signal band by analog electronics and digitized, or, alternatively, the signal may be digitized and band pass filtered in software. As a consequence, the shot noise contribution to the signal is likely reduced by a factor equal to the number of spectral bands, while the signal amplitude can remain the same. The reduction of the shot noise increases the dynamic range and sensitivity of the system.
Owner:THE GENERAL HOSPITAL CORP

Object position detection system and method

A proximity sensor system includes a sensor matrix array having a characteristic capacitance on horizontal and vertical conductors connected to sensor pads. The capacitance changes as a function of the proximity of an object or objects to the sensor matrix. The change in capacitance of each node in both the X and Y directions of the matrix due to the approach of an object is converted to a set of voltages in the X and Y directions. These voltages are processed by digital circuitry to develop electrical signals representative of the centroid of the profile of the object, i.e, its position in the X and Y dimensions. Noise reduction and background level setting techniques inherently available in the architecture are employed.
Owner:SYNAPTICS INC

Method and apparatus for performing touch-based adjustments within imaging devices

A camera and method which selectively applies image content adjustments to elements contained in the image material. By way of example, the method involves registration of user touch screen input and determination of the arbitrary extent of a specific element in the captured image material at the location at which touch input was registered. Once selected, the element can be highlighted on the display, and additional user input may be optionally input to control what type of adjustment is to be applied. Then the element within the captured image material is processed to apply automatic, or user-selected, adjustments to the content of said element in relation to the remainder of the captured image. The adjustments to the image element may comprise any conventional forms of image editing, such as saturation, white balance, exposure, sizing, noise reduction, sharpening, blurring, deleting and so forth.
Owner:SONY CORP +1

Capacitive sensor systems and methods with increased resolution and automatic calibration

Methods and systems for capacitive proximity and contact sensing employ one or more simple sensors (which may be a conductive fiber or pattern of conductive ink) in communication with a microcontroller. Digital signal processing executed by the microcontroller enables resolution enhancement, automatic and continuous calibration, noise reduction, pattern recognition and the configuration of virtual sensors capable of detecting how an object incorporating the sensors is being manipulated.
Owner:IROBOT CORP

Methods and systems for node and link identification

Methods and systems for node and link detection in social network analysis. Interactive noise reduction allows reduction of the data set under analysis to enable substantially real time detection of links and nodes.
Owner:SECURBORATION +1

System and method for utilizing omni-directional microphones for speech enhancement

Systems and methods for utilizing inter-microphone level differences (ILD) to attenuate noise and enhance speech are provided. In exemplary embodiments, primary and secondary acoustic signals are received by omni-directional microphones, and converted into primary and secondary electric signals. A differential microphone array module processes the electric signals to determine a cardioid primary signal and a cardioid secondary signal. The cardioid signals are filtered through a frequency analysis module which takes the signals and mimics a cochlea implementation (i.e., cochlear domain). Energy levels of the signals are then computed, and the results are processed by an ILD module using a non-linear combination to obtain the ILD. In exemplary embodiments, the non-linear combination comprises dividing the energy level associated with the primary microphone by the energy level associated with the secondary microphone. The ILD is utilized by a noise reduction system to enhance the speech of the primary acoustic signal.
Owner:KNOWLES ELECTRONICS INC

Method and apparatus for reducing contamination of an electrical signal

The method of reducing contamination of electrical signals recorded in the presence of repeated interference contamination comprises obtaining an electrical signal recorded in the presence of a contaminating signal, and detecting a timing signal that occurs at a fixed time point during the electrical signal relative to the onset of the contaminating signal. The electrical signal is digitized, wherein the digitizing begins with the timing signal. A plurality of digitized electrical signals is analyzed, wherein the electrical signals are synchronized with respect to the timing signal, to obtain an estimated contaminating signal that is subtracted from the digitized electrical signal. This method can be used with electrophysiological signals, such as EEG, ECG, EMG and galvanic skin response, and for elimination of noise associated with concurrently used methods such as MRI. The method of noise reduction is applicable to recordings of other electrical signals, including audio recordings.
Owner:RGT UNIV OF CALIFORNIA

Noise reduction within an electronic device using automatic frequency modulation

Disclosed is a system and method for providing an oscillating signal of relatively precise frequency without using a signal provided by a crystal as a reference. Disclosed is a feedback oscillator circuit configured to output an oscillating signal having a frequency defined by a reference signal. The oscillating signal can be sent to one or more circuits including at least one frequency sensitive element. The frequency sensitive element produces an output signal which depends on the frequency of the oscillating signal. A controller controls the reference signal in order to cause an attribute of the output signal to have a value within a desired range.
Owner:APPLE INC

Video input processor, imaging signal-processing circuit, and method of reducing noises in imaging signals

A video input processor is disclosed. The processor includes: an imaging signal-generating portion configured to image a subject and producing first imaging signals containing visible light components and a second imaging signal containing near-infrared light components; a gain adjustment portion configured to adjustably set a maximum gain value according to a relative magnitude between the visible light components and the near-infrared light components and adjust a gain for the first imaging signals at the set maximum gain value; and a noise reduction portion configured to reduce noises in the first imaging signals after the gain has been adjusted.
Owner:SONY CORP

Noise reduction hood for an electronic system enclosure

A noise reduction hood for attenuating the acoustic noise of cooling fans emanating from an electronic enclosure. The hood is comprised of a base that is constructed and arranged to be supported on the enclosure. The base has an air duct that is adapted to pass air therethrough in a first direction, and includes at least one noise reduction panel disposed in the air duct to attenuate acoustic noise emanating from the enclosure. In one embodiment, the noise reduction panel divides the air duct into a plurality of acoustical flow passages extending through the base. In another embodiment, the hood includes a cover, which may be detachable, that is adapted to divert the air from the first direction to a second direction. In a further embodiment, the hood includes a rim extending from the base for surrounding a portion of the enclosure to secure the hood to the enclosure. The hood may include a plurality of interlocking panels that are arranged in a grid pattern to form an array of acoustical flow passages.
Owner:EMC IP HLDG CO LLC

Active noise-reduction control apparatus and method

Apparatus includes generator generating reference signal based on noise emitted from sound source, detector detecting level of reference signal and change in level, unit comparing change with threshold-value range and produce compared result, filter filtering reference signal, adaptive filter having variable filter coefficient, unit updating filter coefficient according to change of level of reference signal for obtaining an updated filter coefficient, unit stopping updating of filter coefficient in response to compared result when change falls outside threshold-value range, unit storing updated filter coefficient each time filter coefficient is updated, generator generating control signal using stored filter coefficient, unit generating control sound based on control signal, microphone detecting synthesis sound pressure of control sound and noise to produce an error signal, and unit setting stored filter coefficient to more accurate coefficient than stored filter coefficient based on error signal, and signal acquired by filtering control signal through filter.
Owner:KK TOSHIBA

Dual microphone noise reduction for headset application

Improved vocal signals are obtained in headsets and similar devices by including a microphone inside a chamber formed at least in part by the wearer's ear. This second microphone provides a reduced noise input signal. The reduced noise signal is corrected by input from another microphone, located outside the chamber. This correction can include echo cancellation, spectral shaping, frequency extension, and the like.
Owner:QUALCOMM TECH INT

Microphone Array System

ActiveUS20120076316A1Increase heightPartially suppresses ambient noise signalMicrophonesEar treatmentSensor arrayEnvironmental noise
A method and system for enhancing a target sound signal from multiple sound signals is provided. An array of an arbitrary number of sound sensors positioned in an arbitrary configuration receives the sound signals from multiple disparate sources. The sound signals comprise the target sound signal from a target sound source, and ambient noise signals. A sound source localization unit, an adaptive beamforming unit, and a noise reduction unit are in operative communication with the array of sound sensors. The sound source localization unit estimates a spatial location of the target sound signal from the received sound signals. The adaptive beamforming unit performs adaptive beamforming by steering a directivity pattern of the array of sound sensors in a direction of the spatial location of the target sound signal, thereby enhancing the target sound signal and partially suppressing the ambient noise signals, which are further suppressed by the noise reduction unit.
Owner:VOCALIFE LLC +1

Adaptive Noise Reduction Using Level Cues

ActiveUS20110182436A1Maximize noise reduction performanceOptimizationEar treatmentSpeech analysisControl signalAdaptive denoising
An array of microphones utilizes two sets of two microphones for noise suppression. A primary microphone and secondary microphone of the three microphones may be positioned closely spaced to each other to provide acoustic signals used to achieve noise cancellation. A tertiary microphone may be spaced with respect to either the primary microphone or the secondary microphone in a spread-microphone configuration for deriving level cues from audio signals provided by tertiary and the primary or secondary microphone. Signals from two microphones may be used rather than three microphones. The level cues are expressed via an inter-microphone level difference (ILD) which is used to determine one or more cluster tracking control signals. The ILD based cluster tracking signals are used to control the adaptation of null-processing noise cancellation modules. A noise cancelled primary acoustic signal and ILD based cluster tracking control signals are used during post filtering to adaptively generate a mask to be applied against a speech estimate signal.
Owner:KNOWLES ELECTRONICS INC

Image signal processing apparatus, imaging apparatus, image signal processing method and computer program

There is provided an image signal processing apparatus, comprising a demosaic processing unit receiving input of mosaic image data of each of signals obtained by a single plate imaging device having an element array composed of visible light obtaining elements obtaining visible light signals, and invisible light obtaining elements obtaining signals including invisible light components, and generating a demosaic image of each of the obtained signals; and a noise reduction processing unit receiving input of the demosaic image to execute correction of pixel values of the demosaic image obtained by the visible light obtaining elements on the basis of edge information extracted from the demosaic image of the signals obtained by the invisible light obtaining elements.
Owner:SONY SEMICON SOLUTIONS CORP

Low frequency noise reduction circuit architecture for communications applications

A noise reduction circuit for reducing the effects of low frequency noise such as wind noise in communications applications is described. In one embodiment, the noise reduction circuit features a high pass filter formed by exploiting the existing off-chip AC coupling capacitances in making the connection to the source of audio signals. The filter may be adaptive to environmental low frequency noise level through programming the shunt resistances. A low-noise wide dynamic range programmable gain amplifier is also described. Adaptive equalization of the audio signal is also described through the utilization of programmable front-end resistors and a back-end audio equalizer.
Owner:AVAGO TECH INT SALES PTE LTD

Biosensor Detection By Means Of Droplet Driving, Agitation, and Evaporation

Methods of improving microfluidic assays are disclosed. Assays can be improved (better signal to noise ratio) by using sessile drop evaporation as an analyte concentration step (enhanced signal) and repeated passes of wash droplets as a means to reduce non-specific binding (noise reduction). In addition multiple massively parallel analyses improve the statistical precision of the analyses.
Owner:ADVANCED LIQUID LOGIC

Binaural signal processing using multiple acoustic sensors and digital filtering

A desired acoustic signal is extracted from a noisy environment by generating a signal representative of the desired signal with processor (30). Processor (30) receives aural signals from two sensors (22, 24) each at a different location. The two inputs to processor (30) are converted from analog to digital format and then submitted to a discrete Fourier transform process to generate discrete spectral signal representations. The spectral signals are delayed to provide a number of intermediate signals, each corresponding to a different spatial location relative to the two sensors. Locations of the noise source and the desired source, and the spectral content of the desired signal are determined from the intermediate signal corresponding to the noise source locations. Inverse transformation of the selected intermediate signal followed by digital to analog conversion provides an output signal representative of the desired signal with output device (90). Techniques to localize multiple acoustic sources are also disclosed. Further, a technique to enhance noise reduction from multiple sources based on two-sensor reception is described.
Owner:THE BOARD OF TRUSTEES OF THE UNIV OF ILLINOIS

Active noise reduction for audiometry

InactiveUS6396930B1Maximize noise control performanceAccurate comparisonEar treatmentAudiometeringNoise controlNoise field
The technology of active noise reduction (ANR) is incorporated into audiometry testing in a variety of formats. Analog feedback, digital feedback, adaptive feedforward, and adaptive feedback noise control schemes are presented for use in audiometry to reduce the ambient noise heard by the test subject, allowing subject testing in higher ambient noise fields. Audiometer test signals are appropriately compensated so the test results are accurate and comply with existing calibration standards for audiometers. Existing audiometry headphone technologies are modified so that ANR can be accomplished while satisfying existing standards for audiometric testing. Embodiments are also defined for alternate headphone arrangements that may not conform to current (1997) audiometric testing standards but provide sufficient performance advantages to warrant new standards for audiometry testing in the future.
Owner:GENTEX CORP

Pump potential cavitation fault detecting method based on quick spectrum kurtosis analysis

The invention discloses a pump potential cavitation fault detecting method based on quick spectrum kurtosis analysis. The pump potential cavitation fault detecting method comprises the steps that 1, vibration acceleration signals are collected to be subject to noise reduction to serve as to-be-processed signals; 2, according to the data size of the signals, the resolving order of signal processingis determined; 3, according to the quick spectrum kurtosis algorithm computation result, the optimal carrier frequency and bandwidth are selected; 4, the selected signals within the carrier frequencyand bandwidth are subject to Fourier transformation, and a frequency spectrum envelope diagram is obtained; and 5, an original signal time domain figure, a signal time domain figure treated through quick spectrum kurtosis filtering processing and the frequency spectrum envelope diagram obtained after selected zone Fourier transformation are compared, and cavitation trouble signal time and frequency characteristics are analyzed. By means of the method, more cavitation instant signals can be detected, information in the aspects of time domain and frequency domain is seen more clearly, and the normal state and the cavitation state of a pump can be distinguished obviously.
Owner:ZHEJIANG UNIV

Device for probe card power bus noise reduction

Noise reduction for application of structural test patterns to a Device Under Test (DUT) is accomplished with a capacitor “booster” bypass network on the probe card in which the capacitors are charged to a much higher voltage Vboost than the DUT power supply voltage VDD. Charging the capacitors to a voltage N×VDD allows the buster network to store N times the charge of a conventionally configured capacitance network, and effectively provides N times the capacitance of the original network in the same physical space.
Owner:GLOBALFOUNDRIES INC

Speech recognition

A speech recognition system comprises: an input, for receiving an input signal from at least one microphone; a first buffer, for storing the input signal; a noise reduction block, for receiving the input signal and generating a noise reduced input signal; a speech recognition engine, for receiving either the input signal output from the first buffer or the noise reduced input signal from the noise reduction block; and a selection circuit for directing either the input signal output from the first buffer or the noise reduced input signal from the noise reduction block to the speech recognition engine.
Owner:CIRRUS LOGIC INC

Noise estimation for use with noise reduction and echo cancellation in personal communication

A method comprises processing M subband communication signals and N target-cancelled signals in each subband with a set of beamformer coefficients to obtain an inverse target-cancelled covariance matrix of order N in each band; using a target absence signal to obtain an initial estimate of the noise power in a beamformer output signal averaged over recent frames with target absence in each subband; multiplying the initial noise estimate with a noise correction factor to obtain a refined estimate of the power of the beamformer output noise signal component in each subband; processing the refined estimate with the magnitude of the beamformer output to obtain a postfilter gain value in each subband; processing the beamformer output signal with the postfilter gain value to obtain a postfilter output signal in each subband; and processing the postfilter output subband signals to obtain an enhanced beamformed output signal.
Owner:OTICON
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products