Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2009 results about "Digital circuitry" patented technology

Geographic-based communication service system with more precise determination of a user's known geographic location

A geographic based communications service system that includes a network and a plurality of access points connected to the network and arranged at known locations in a geographic region. One or more service providers or information providers may be connected to the network to provide services or information on the network. Content provided by the service providers may be based on the known geographic location of the user of a portable computing device (PCD). The known geographic location may be determined with a high degree of precision, using one or more access points and one of several different techniques. In one embodiment, the geographic location of the PCD may be determined within a radius of ten feet. Access points may be configured to determine the bearing of a signal received from a PCD, as well as the strength of the signal transmitted by the PCD. Access points may also be configured to send and receive signals with time stamps. These time stamps may be used to calculate signal travel time, thereby allowing a determination of the distance between an access point and a PCD. Each access point may include location circuitry. The location circuitry may include both analog and digital circuitry configured to perform the various methods used to determine the precise geographic location.
Owner:META PLATFORMS INC

Transceiver control with sleep mode operation

A transceiver which keeps circuitry associated with a receiver in a powered down state during periods when a Received Signal Strength Indicator (RSSI) indicates that a signal being received is below a pre-determined threshold level, and which begins to power up the transmitter as soon as it is determined that a packet being received requires a response. The RSSI signal represents the strength of any signal current being received, and if the RSSI signal falls below a given threshold level, digital circuitry associated with the back-end circuitry of the receiver system is disabled. If the RSSI signal rises above the threshold level, the digital circuitry of the receiver is enabled. A control circuit within the transceiver processes the packet as it is received to determine whether the packet requires a response. If it is determined that a response is necessary, the control circuit provides a control signal to the transmitter to power up the transmitter from a sleep mode even before the entire packet has been received and processed. The control circuit then continues to process the remainder of the packet as it is received while the transmitter powers up from the sleep mode. In this manner, the transmitter will become stabilized much earlier. Accordingly, the transceiver is able to respond more quickly than conventional devices and is thus able to increase response times and overall data exchange rates. Moreover, battery power of the transceiver is utilized more efficiently compared to devices which must continuously maintain the receiver and transmitter in fully powered modes.
Owner:TELXON INC

Noise-reducing arrangement and method for signal processing

A communication system uses analog and digital circuits along the same data path in a manner that permits the analog circuitry to avoid adverse affects caused by the digital circuitry. Consistent with one embodiment directed to a signal processing system that detects faint incoming signals, the analog and digital circuits are implemented on a single piece of silicon. In such signal processing systems, noise generated by digital processing blocks can degrade the performance of sensitive analog portions. The effective noise is reduced by causing the analog and digital portions of the system to function during separate time intervals. The noise-generating portions of the system may then be turned off during a first data-communication interval while the analog block operates. The data acquired during this period is stored for subsequent processing by the digital portion during a second shorter data-communication interval. Other aspects are applicable to reception arrangements in which part of the incoming signal may be disregarded without significant degradation in performance of the rest of the system, and other aspects are directed to transmission arrangements in which the inverse of the above reception arrangement is used.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV

Method and apparatus for reducing power consumption in digital electronic circuits

An integrated circuit with power conservation includes a number of functional blocks, each of which includes a digital circuitry and at least one output control line, and a power controller coupled to the control lines. The output control lines develop clock control signals based upon a functional block's knowledge of the direction of data flow. The power controller the reduces power by deactivating functional blocks that are not needed as indicated by the clock control signals. More specifically, a system with power conservation includes a number of functional blocks capable of processing data, each of the functional blocks including a modulated clock input and N+1 clock control lines which reflect the direction of data flow, where N is a number of neighbors of a particular functional block, and a clock controller having an input clock, the clock controller being coupled to the modulated clock inputs and the clock control lines of the functional blocks. The clock controller is operative to modulate the input clock in accordance with the signals on the clock control lines to provide modulated clocks to each of the plurality of functional blocks. A method for reducing power consumption includes the steps of: a) receiving control signals from a number of functional blocks; b) selectively deactivating a particular functional block upon a request from that functional block or from another functional block; and c) activating the particular functional block upon a request from another functional block.
Owner:CONVERSANT INTPROP MANAGEMENT INC

Large area position/proximity correction device with alarms using (D)GPS technology

A collar to be worn on an object or a large or small animal has been designed incorporating (D)GPS technology. The operation of the device includes programming the three dimensional boundary into the memory of the device and simply installing the collar on the animal. As the animal approaches the preprogrammed boundary, a first alarm sounds when the subject is within an arbitrary user defined distance, and a second more drastic alarm such as a shock correction is applied when the subject approaches a second position closer to the boundary. Means to easily program the device are also included in the system. The device has the capability to call or transmit important information such as location, speed, identity, and medical parameters etc to a station automatically or when polled. All necessary analog and digital circuitry, microprocessor, programming, communications hardware are integrated into the collar. The device also has applications in land, air and sea navigation, farming, construction, tracking stolen vehicles, and keeping track of children. This device could also be embedded in a specialized lawnmower that would know where your yard ended and your neighbor's began, and traverse around all obstacles in the yard. Important Military applications would include warning and directing soldiers of front line boundaries, minefield mapping and 3-D direction around MOA's for aircraft.
Owner:INT RES INST

Large area position/proximity correction device with alarms using (D)GPS technology

A collar to be worn on an object or a large or small animal has been designed incorporating (D)GPS technology. The operation of the device includes programming the three dimensional boundary into the memory of the device and simply installing the collar on the animal. As the animal approaches the preprogrammed boundary, a first alarm sounds when the subject is within an arbitrary user defined distance, and a second more drastic alarm such as a shock correction is applied when the subject approaches a second position closer to the boundary. Means to easily program the device are also included in the system. The device has the capability to call or transmit important information such as location, speed, identity, and medical parameters, etc. to a station automatically or when polled. All necessary analog and digital circuitry, microprocessor, programming, communications hardware are integrated into the collar. The device also has applications in land, air and sea navigation, farming, construction, tracking stolen vehicles, and keeping track of children. This device could also be embedded in a specialized lawnmower that would know where your yard ended and your neighbor's began, and traverse around all obstacles in the yard. Important Military applications would include warning and directing soldiers of front line boundaries, minefield mapping and 3-D direction around MOA's for aircraft.
Owner:INT RES INST

Method and apparatus for at-speed testing of digital circuits

A scheme for multi-frequency at-speed logic Built-In Self Test (BIST) is provided. This scheme allows at-speed testing of very high frequency integrated circuits controlled by a clock signal generated externally or on-chip. The scheme is also applicable to testing of circuits with multiple clock domains which can be either the same frequency or different frequency. Scanable memory elements of the digital circuit are connected to define plurality of scan chains. The loading and unloading of scan chains is separated from the at-speed testing of the logic between the respective domains and may be done at a faster or slower frequency than the at-speed testing. The BIST controller, Pseudo-Random Pattern Generator (PRPG) and Multi-input Signature Register (MISR) work at slower frequency than the fastest clock domain. After loading of a new test pattern, a clock suppression circuit allows a scan enable signal to propagate for more that one clock cycle before multiple capture clock is applied. This feature relaxes the speed and skew constraints on scan enable signal design. Only the capture cycle is performed at the corresponding system timing. A programmable capture window makes it possible to test every intra- and inter-domain at-speed without the negative impact of clock skew between clock domains.
Owner:MENTOR GRAPHICS CORP

Phase lock loop with coarse control loop having frequency lock detector and device including same

A phase lock loop (PLL) for controlling a sampling clock or other clock, and a data sampling circuit, transceiver, or other device including such a PLL. The PLL includes a multi-range VCO, at least one fine control loop for controlling the VCO, and a coarse control loop for controlling the VCO by changing its frequency-voltage characteristic. The coarse control loop includes a frequency lock detector and voltage range monitoring logic. Typically, the frequency lock detector locks operation of the coarse control loop when the difference between the VCO output clock frequency and a reference frequency decreases to within a predetermined threshold, and the unlocked coarse control loop employs the voltage range monitoring logic to change the VCO frequency-voltage characteristic when the VCO's fine control voltage leaves a predetermined range. Other aspects are a transceiver (including at least two receiver interfaces and a transmitter interface) implementing a clocking scheme employing no more than three PLLs for clock generation, and a transceiver having a multi-layered receiver interface including digital circuitry and a single clock-generating PLL (an analog PLL for generating a multiphase clock to be shared by all layers of the receiver interface). Each receiver interface layer performs blind oversampling on a different received signal using the multiphase clock and the digital circuitry includes multilayered digital phase lock loop circuitry which receives the oversampled data.
Owner:LATTICE SEMICON CORP

DC-DC converter with improved dynamic response

The invention relates to a control method and a controller for a DC-DC converter, such as a synchronous Buck converter, which exploits the principle of capacitor charge balance to allow the converter to recover from a positive and/or negative load current step in the shortest achievable time, with the lowest possible voltage undershoot/overshoot. The control method may be implemented by either an analog or a digital circuit. The controller may be integrated with existing controller schemes (such as voltage-mode controllers) to provide superior dynamic performance during large-signal transient conditions while providing stable operation during steady state conditions. The invention also relates to a method and a modification of a DC-DC converter topology that comprises connecting a controlled current source between an input terminal and an output terminal of the DC-DC converter; detecting a load current step to a new load current; modifying a duty cycle of the DC-DC converter; and modifying current through a parallel output capacitor of the DC-DC converter by controlling current of the current source. The methods and circuits provided herein are applicable to Buck converters and Buck-derived converters such as forward, push-pull, half-bridge, and full-bridge converters.
Owner:GANPOWER SEMICON FOSHAN LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products