Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1131 results about "Varicap" patented technology

In electronics, a varicap diode, varactor diode, variable capacitance diode, variable reactance diode or tuning diode is a type of diode designed to exploit the voltage-dependent capacitance of a reverse-biased p–n junction.

Reconfigurable parasitic control for antenna arrays and subarrays

InactiveUS20050088358A1Reduce decreaseScan angles can be increasedLogperiodic antennasAntenna arraysEngineeringArray element
Reconfiguration of parasitically controlled elements in a phased array is used to expand the range of operational functions. Embedded array elements can be frequency tuned, and bandwidth can be improved by using reconfiguration to broaden the bandwidth of the embedded elements. For high gain arrays, beam squint can be a limiting factor on instantaneous bandwidth. Reconfiguration can alleviate this problem by providing control of the element phase centers. Scan coverage can be improved and scan blindness alleviated by controlling the embedded antenna patterns of the elements as well as by providing control of the active impedance as the beam is scanned. Applying limited phase control to the elements themselves can alleviate some of the complexity of the feed manifold. A presently preferred method of designing reconfigurable antennas is to selectively place controlled parasitic elements in the aperture of each of the antenna elements in the phased array. The parasitic elements can be controlled to change the operational characteristics of the antenna element. The parasitic elements are controlled by either switching load values in and out that are connected to the parasitic elements or are controlled by applying control voltages to variable reactance circuits containing devices such as varactors. The parasitic elements can be controlled by the use of a feedback control subsystem that is part of the antenna system which adjusts the RF properties of the parasitic components based on some observed metric. The controllable characteristics include directivity control, tuning, instantaneous bandwidth, and RCS.
Owner:TOYON RES CORP

Method and apparatus for fully integrating a voltage controlled oscillator on an integrated circuit

A method and apparatus for fully integrating a Voltage Controlled Oscillator (VCO) on an integrated circuit. The VCO is implemented using a differential-mode circuit design. The differential-mode implementation of the VCO preferably comprises a differential mode LC-resonator circuit, a digital capacitor, a differential pair amplifier, and a current source. The LC-resonator circuit includes at least one tuning varactor and two high Q inductors. The tuning varactor preferably has a wide tuning capacitance range. The tuning varactor is only used to "fine-tune" the center output frequency f0 of the VCO. The center output frequency f0 is coarsely tuned by the digital capacitor. The VCO high Q inductors comprise high gain, high self-resonance, and low loss IC inductors. The IC VCO is fabricated on a high resistivity substrate material using a trench isolated guard ring. The guard ring isolates the fully integrated VCO, and each of its component parts, from RF signals that may be introduced into the IC substrate by other devices. By virtue of the improved performance characteristics provided by the digital capacitor, the analog tuning varactor, the high Q inductor, and the trench isolated guard ring techniques, the inventive VCO is fully integrated despite process variations in IC fabrication.
Owner:CSR TECH INC

Electronically tunable quad-band antennas for handset applications

An electronically tunable quad-band antenna which includes a tunable high band antenna tuned by at least one tunable varactor associated therewith; the tunable high band antenna further includes a substrate, a patch element on said substrate, at least one voltage tunable varactor associated with the patch element, a DC bias point on the patch element, an RF input on the patch element, and a temperature sensor associated with the high band pass antenna. Also included in a preferred embodiment of the electronically tunable quad-band antenna of the present invention is a tunable low band antenna tuned by at least one tunable varactor associated therewith, the tunable low band antenna further including a substrate, a patch element on said substrate, at least one voltage tunable varactor associated with said patch element, a DC bias point on said patch element, an RF input on said patch element, and a temperature sensor associated with said low band pass antenna.Also included is a controller receiving control data, and receiving output information from said low band antenna and output information from said high band antenna and controlling a first bias voltage for biasing the at least one voltage tunable varactor associated with the high band antenna and a second bias voltage for biasing the at least one voltage tunable varactor associated with the low band antenna. The bias voltages can be provided by a DC to DC converter regulator.
Owner:NXP USA INC

Phased-array antenna based on dynamic-regulating artificial electromagnetic structural materials

ActiveCN103474775ARealize two-dimensional dynamic scanningSimple structureWaveguide hornsEngineeringDielectric slab
The invention provides a phased-array antenna based on dynamic-regulating artificial electromagnetic structural materials. The phased-array antenna comprises a horn feed source and multiple layers of the dynamic-regulating artificial electromagnetic structural materials covering the upper portion of the horn feed source. Each layer of the materials is formed in the modes that metal patches with annular gaps distributed periodically are printed on the front of a dielectric slab, variable capacitance diodes are embedded in vertical centers of the annular gaps, gap lines used for isolating direct currents are etched between the annular gaps in different columns, and metal leads are printed on the back of the dielectric slab and via holes are metallized so that direct-current voltage can be provided for the metal patches in the annular gaps in different rows. Capacitance of the variable capacitance diodes between different rows or different columns is adjusted through controlling of a direct-current voltage source, so that radiation phases of regions in adjacent rows or adjacent columns gradually increase or decrease, the phase different value is dynamically adjusted, and dynamic scanning of antenna beams can be achieved. The phased-array antenna has the advantages of being simple in structure, convenient to power up, low in insertion loss, low in cost and the like and can achieve two-dimensional dynamic scanning of an E face and an H face.
Owner:INST OF OPTICS & ELECTRONICS - CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products