Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4333 results about "Digital-to-analog converter" patented technology

In electronics, a digital-to-analog converter (DAC, D/A, D2A, or D-to-A) is a system that converts a digital signal into an analog signal. An analog-to-digital converter (ADC) performs the reverse function.

Array Antenna System and Spread Spectrum Beamformer Method

A method for transmitting digital beamformed signals in a transmit array antenna apparatus utilizing a single transceiver with one power amplifier, one up-frequency converter and one digital-to-analog converter for said array transmit antenna apparatus comprising the steps of: generating a first set of direct-sequence spread spectrum codes; generating a plurality of weights, each weight being a beamforming amplitude and phase or delay for each element; generating a direct-sequence spread spectrum multiplexed signal containing such weights while using one of such first-set codes per element; converting such an multiplexed signal to a convenient radio frequency; amplifying and transmitting such a multiplexed radio frequency signal to the elements; generating a second set of direct-sequence spread spectrum codes; extracting a radio frequency signal with direction-bearing weight information at each element while using a subset of codes from the second set; generating a third set of direct-sequence spread spectrum codes at each element; transmitting a signal with array gain beamformed towards a specific direction while using a transmit array apparatus composed of spaced elements, such a transmit beamformed signal being a radio frequency signal, a direct-sequence spread spectrum radio frequency signal containing a subset of codes from the third set, or a sequence of radio frequency pulses that have short duration and high power.
Owner:APPLIED RADAR

High efficiency linearization power amplifier for wireless communication

An embodiment of the invention uses a predistortion correction signal to combination the modulated RF signal by an analog multiplier for linearization of power amplifiers having nonlinear characteristics such as those used in wireless RF transmitters. A predistortion controller comprises a plurality of down converters for retrieving both the ideal non-distorted information and the feedback distorted information, together with pre-stored digitally-indexed predistortion information stored, for example, in a look-up table. The digitally-indexed information models nonlinear characteristics of the high power amplifier, and is stored prior to processing of pre-compensation in the power amplifier. When the predistortion information is combined with the modulated RF signal in the analog multiplier, the result is a substantially linear information transmission from the power amplifier. In an embodiment of the system, the modulated RF input signal and the feedback signal from PA output are down-converted, respectively, by analog devices, such as mixers, after which the analog intermediate frequency (IF) signals are digitized by analog-to-digital converters for digital predistortion correction processing, followed by predistortion processing performed by, for example, a DSP or FPGA chip to generate a digital correction control signal, which is then converted to an analog signal by a digital-to-analog converter, followed by combining the analog correction signal with the RF modulated input signal to yield the input to the power amplifier.
Owner:DALI WIRELESS

Apparatus and method for identifying and simultaneously displaying images of musical notes in music and producing the music

Our invention is an apparatus and method to identify and simultaneously visualize and hear musical notes contained in an analog or digital sound wave. Musical notes are expanded into a language for the eye as well as the ear. An analog-to-digital converter processes an analog sound wave to provide a digital sound wave. Component frequencies of the digital sound waves are identified, filtered and translated to their corresponding musical note and volume. As the original digital sound wave is sent through a digital-to-analog converter and output to an audio device, the identified musical notes are synchronously output to a display device. User-specified parameters, adjustable at any time before, during or after the music-playing process, control frequency filtering, the graphic display of the identified musical notes and the graphical background on which the musical notes are displayed. Users may also utilize existing, or create their own, computer programming code software modules, known as plug-ins, or hardware components, to interface with the invention to extend and control the invention's functionality. Because the synchronous musical note identification and visualization process occurs extremely quickly, the method applies and works in real-time for live music.
Owner:STEINBERG GRIMM

Residue-compensating A/D converter

An analog-to-digital converter system [50D] processing an input signal, g, which can be either a discrete-time or a continuous-time signal. A first quantizer [154] generates a first digital signal, d0(k), representing the sum of the input signal, g, and a dithering signal, y0. A digital-to-analog converter [156] generates an analog feedback signal, alpha, representing accurately the first digital signal, d0(k). The DAC [156] may be linearized by the use of mismatch-shaping techniques. A filter [158] generates the dithering signal, y0, by selectively amplifying in the signal band the residue signal, r0, defined as the difference of the input signal, g, and the analog feedback signal, alpha. Optional signal paths [166][168] are used to minimize the closed-loop signal transfer function from g to y0, which ideally will be zero. An analog compensation signal, m0, which is described by a well-controlled relationship to the residue signal, r0, is extracted from the filter [158]. Ideally, the closed-loop signal transfer function from g to m0 will be zero, or at least small in the signal band. A second quantizer [160] converts the analog compensation signal, m0, into a second digital signal, dm0(k). The two digital signals, d0(k) and dm0(k), are filtered individually and then added to form the overall output signal, dg(k). The second digital filter [164] has a low signal-band gain, which implies that the sensitivity to signal-band errors caused by the second quantizer [160] will be low. The output signal, dg(k), is a highly-accurate high-resolution representation of the input signal, g. Circuit imperfections, such as mismatch, gain errors, and nonlinearities, will cause only noise-like errors having a very low spectral power density in the signal band.The invention facilitates the implementation of uncalibrated highly-linear high-resolution wide-bandwidth A/D converters [50D], e.g., for use in digital communication systems, such as xDSL modems and other demanding consumer-market products for which low cost is of the essence.
Owner:ANALOG DEVICES BV

Simultaneous common-frequency full duplex self-interference offset method in multi-path environment

ActiveCN103338172AImprove stabilityEliminates the effects of self-interference cancellation performanceTransmitter/receiver shaping networksSelf interferenceFrequency spectrum
The invention discloses a simultaneous common-frequency full duplex self-interference offset method in a multi-path environment. The method comprises the steps that in the transmission end, a digital signal to be transmitted is sent to a signal pre-correction module and a digital interference offset module, and a radio frequency signal to be transmitted is sent to a radio frequency interference reconstruction unit. The signal outputted by the signal pre-correction module passes through a DAC (digital-to-analog converter) and a transmission radio frequency channel to form a pre-corrected radio frequency signal. In the receiving end, the outputted self-interference signal subtracts the pre-corrected radio frequency signal and the radio frequency signal processed by the radio frequency interference reconstruction unit, the radio frequency self-interference offset is finished, and the offset signal, the pre-corrected radio frequency signal and the converted digital signal are sent to the digital interference offset module to finish the digital interference offset, together with the digital signal to be transmitted and the pre-corrected digital signal. The simultaneous common-frequency full duplex self-interference offset method under the multi-path environment is applicable to a simultaneous common-frequency system, the utilization rate of spectrum is doubled, the radio frequency self-interference offset performance is improved, the communication quality of the system is improved, and the working stability of communication equipment in a simultaneous common-frequency multi-path environment is improved.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

Radio frequency control for communication systems

The present invention provides for a system and method for improvement of radio transmitter and receiver frequency accuracy for a local radio communication unit that communicates digital data with a remote communication unit. In the local unit the received radio signal is down-converted, and converted to complex baseband digital samples by an analog-to-digital converter. A downlink digital phase rotator applies a fine frequency shift to the samples in accordance with a receiver frequency offset command. The resultant baseband signal is used by the data demodulator and by a receiver frequency error estimator to obtain receiver frequency errors. A data modulator generates baseband complex samples which are shifted in carrier frequency by an integrated uplink digital phase rotator in accordance with a transmitter frequency offset command. The modulated samples are then converted by a digital-to-analog converter and upconverted in frequency for radio transmission to the remote unit. The local oscillator signals for both upconverter and downconverter are phase locked to a reference frequency generated by a VCXO. An automatic frequency control (AFC) function nulls the transmitter and receiver frequency error by the frequency adjustment commands to the uplink and downlink phase rotators or to the VCXO digital-to-analog converter (VCXO DAC) by feedback control principals based on measured receiver frequency error. During frequency track mode when communications between local and remote units are possible, the AFC only adjusts radio frequency via phase rotator commands and the VCXO command remains fixed, thereby avoiding communications performance degradation by VCXO frequency quantization error due to the VCXO DAC. The AFC adjusts VCXO frequency only during a preliminary acquisition mode prior to data communications, or to back out excessively large frequency offsets accumulated in the downlink and uplink phase rotators during track mode. When a VCXO adjustment is made in track mode, phase rotator adjustments are simultaneously applied to cancel the errors in transmitter and receiver radio frequencies caused by the step change due to VCXO frequency quantization thereby mitigating VCXO frequency quantization noise.
Owner:AVAGO TECH WIRELESS IP SINGAPORE PTE

Liquid crystal display, driving apparatus, digital-analog converter and output voltage amplifier thereof

The present invention relates to a liquid crystal display, a driving device thereof, a digital to analog converter, and an output voltage amplifying circuit. The present invention provides a liquid crystal display driving device including a reference gray voltage generator for generating a plurality of reference gray voltages, and a data driver for generating a plurality of gray voltages based on the plurality of reference gray voltages and applying a data signal that is generated by selecting a gray voltage corresponding to m-bit video signals applied from the outside from among the plurality of gray voltages to the pixel The data driver includes: a voltage generator for selecting a first gray voltage and a second gray voltage corresponding to bit values of (m−k) bits from among the video signal from among the plurality of gray voltages, and outputting the first and second gray voltages; an output voltage generator for outputting 2k voltages determined as one of the first and second gray voltages corresponding to bit values of k bits from among the video signal; and an output voltage amplifier for generating the data signal by combining the 2k voltages, and applying the data signal to a plurality of pixels. According to the present invention, a liquid crystal display having a small cost and area can be realized.
Owner:MC TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products