Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2271 results about "Filter bank" patented technology

In signal processing, a filter bank is an array of band-pass filters that separates the input signal into multiple components, each one carrying a single frequency sub-band of the original signal. One application of a filter bank is a graphic equalizer, which can attenuate the components differently and recombine them into a modified version of the original signal. The process of decomposition performed by the filter bank is called analysis (meaning analysis of the signal in terms of its components in each sub-band); the output of analysis is referred to as a subband signal with as many subbands as there are filters in the filter bank. The reconstruction process is called synthesis, meaning reconstitution of a complete signal resulting from the filtering process.

System and method for accurately predicting signal to interference and noise ratio to improve communications system performance

A system for providing an accurate prediction of a signal-to-interference noise ratio is described. The system includes a first circuit for receiving a signal transmitted across a channel via an external transmitter. A second circuit generates a sequence of estimates of signal-to-interference noise ratio based on the received signal. A third circuit determines a relationship between elements of the sequence of estimates. A fourth circuit employs the relationship to provide a signal-to-interference noise ratio prediction for a subsequently received signal. In the illustrative embodiment, the inventive system further includes a circuit for generating a data rate request message based on the signal-to-noise ratio prediction. A special transmitter transmits the data rate request message to the external transmitter. In the specific embodiment, the relationship between elements of the sequence of estimates is based on an average of the elements of the sequence of estimates. The third circuit includes a bank of filters for computing the average. The bank of filters includes finite impulse response filters. Coefficients of the transfer functions associated with each filter in the bank of filters are tailored for different fading environments. The different fading environments include different Rayleigh fading environments, one environment associated with a rapidly moving system, a second environment associated with a slow moving system, and a third system associated with a system moving at a medium velocity. A selection circuit is connected to each of the filter banks and selects an output from one of the filters in the filter bank. The selected output is associated with a filter having a transfer function most suitable to a current fading environment.
Owner:QUALCOMM INC

Digital predistortion system and method for high efficiency transmitters

A system for digitally linearizing the nonlinear behaviour of RF high efficiency amplifiers employing baseband predistortion techniques is disclosed. The system provides additive or multiplicative predistortion of the digital quadrature (I/Q) input signal in order to minimize distortion at the output of the amplifier. The predistorter uses a discrete-time polynomial kernel to model the inverse transfer characteristic of the amplifier, providing separate and simultaneous compensation for nonlinear static distortion, linear dynamic distortion and nonlinear dynamic effects including reactive electrical memory effects. Compensation for higher order reactive and thermal memory effects is embedded in the nonlinear dynamic compensation operation of the predistorter in an IIR filter bank. A predistortion controller periodically monitors the output of the amplifier and compares it to the quadrature input signal to compute estimates of the residual output distortion of the amplifier. Output distortion estimates are used to adaptively compute the values of the parameters of the predistorter in response to changes in the amplifier's operating conditions (temperature drifts, changes in modulation input bandwidth, variations in drive level, aging, etc). The predistortion parameter values computed by the predistortion controller are stored in non-volatile memory and used in the polynomial digital predistorter. The digital predistortion system of the invention may provide broadband linearization of highly nonlinear and highly efficient RF amplification circuits including, but not limited to, dynamic load modulation amplifiers.
Owner:TAHOE RES LTD

Device and method for converting spatial audio signal

An audio processor for converting a multi-channel audio input signal, such as a B-format sound field signal, into a set of audio output signals, such as a set of two or more audio output signals arranged for headphone reproduction or for playback over an array of loudspeakers. A filter bank splits each of the input channels into frequency bands. The input signal is decomposed into plane waves to determine one or two dominant sound source directions. The(se) are used to determine a set of virtual loudspeaker positions selected such that the dominant direction(s) coincide(s) with virtual loudspeaker positions. The input signal is decoded into virtual loudspeaker signals corresponding to each of the virtual loudspeaker positions, and the virtual loudspeaker signals are processed with transfer functions suitable to create the illusion of sound emanating from the directions of the virtual loudspeakers. A high spatial fidelity is obtained due to the coincidence of virtual loudspeaker positions and the determined dominant sound source direction(s). Improved performance can be obtained in the case where Head-Related Transfer Functions are used by differentiating the phase of a high frequency part of the HRTFs with respect to frequency, followed by a corresponding integration of this part with respect to frequency after combining the components of HRTFs from different directions.
Owner:HARPEX LTD

Method and Apparatus of Adaptive Loop Filtering

A method and apparatus for processing in-loop reconstructed video using an in-loop filter is disclosed. In the recent HEVC development, adaptive loop filtering (ALF) is being adopted to process in-loop reconstruction video data, where ALF can be selectively turned ON or OFF for each block in a frame or a slice. An advanced ALF is disclosed later that allows a choice of multiple filter sets that can be applied to the reconstructed video data adaptively. In the present disclosure, pixels of the in-loop reconstructed video data are divided into a plurality of to-be-filtered regions, and an in-loop filter from a filter set is determined for each to-be-filtered region based on a rate-distortion optimization procedure. According to one embodiment of the present invention, computation of cost function associated with the rate-distortion optimization procedure is related to correlation values associated with original video data and the in-loop reconstructed video data. Furthermore, the correlation values can be shared by the multiple candidate filters during the rate-distortion optimization procedure for said each to-be-filtered region. In another embodiment, the correlation values can be shared by multiple candidate to-be-filtered regions of an area of the in-loop reconstructed video data during the rate-distortion optimization procedure for the area of the in-loop reconstructed video data.
Owner:HFI INNOVATION INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products