Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

319 results about "Raman amplifiers" patented technology

A Raman amplifier is an optical amplifier based on Raman gain, which results from the effect of stimulated Raman scattering.

Modular, high energy, widely-tunable ultrafast fiber source

A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Modularity is ensured by the implementation of interchangeable amplifier components. System compactness is ensured by employing efficient fiber amplifiers, directly or indirectly pumped by diode lasers. Peak power handling capability of the fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. Dispersive broadening is introduced by dispersive pulse stretching in the presence of self-phase modulation and gain, resulting in the formation of high-power parabolic pulses. In addition, dispersive broadening is also introduced by simple fiber delay lines or chirped fiber gratings, resulting in a further increase of the energy handling ability of the fiber amplifiers. The phase of the pulses in the dispersive delay line is controlled to quartic order by the use of fibers with varying amounts of waveguide dispersion or by controlling the chirp of the fiber gratings. After amplification, the dispersively stretched pulses can be re-compressed to nearly their bandwidth limit by the implementation of another set of dispersive delay lines. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used. A particularly compact implementation of the whole system uses fiber oscillators in conjunction with fiber amplifiers. Additionally, long, distributed, positive dispersion optical amplifiers are used to improve transmission characteristics of an optical communication system. Finally, an optical communication system utilizes a Raman amplifier fiber pumped by a train of Raman-shifted, wavelength-tunable pump pulses, to thereby amplify an optical signal which counterpropogates within the Raman amplifier fiber with respect to the pump pulses.
Owner:IMRA AMERICA

Modular, high energy, widely-tunable ultrafast fiber source

A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Modularity is ensured by the implementation of interchangeable amplifier components. System compactness is ensured by employing efficient fiber amplifiers, directly or indirectly pumped by diode lasers. Peak power handling capability of the fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. Dispersive broadening is introduced by dispersive pulse stretching in the presence of self-phase modulation and gain, resulting in the formation of high-power parabolic pulses. In addition, dispersive broadening is also introduced by simple fiber delay lines or chirped fiber gratings, resulting in a further increase of the energy handling ability of the fiber amplifiers. The phase of the pulses in the dispersive delay line is controlled to quartic order by the use of fibers with varying amounts of waveguide dispersion or by controlling the chirp of the fiber gratings. After amplification, the dispersively stretched pulses can be re-compressed to nearly their bandwidth limit by the implementation of another set of dispersive delay lines. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used. A particularly compact implementation of the whole system uses fiber oscillators in conjunction with fiber amplifiers. Additionally, long, distributed, positive dispersion optical amplifiers are used to improve transmission characteristics of an optical communication system. Finally, an optical communication system utilizes a Raman amplifier fiber pumped by a train of Raman-shifted, wavelength-tunable pump pulses, to thereby amplify an optical signal which counterpropogates within the Raman amplifier fiber with respect to the pump pulses.
Owner:IMRA AMERICA

Raman amplifier and raman amplifier adjustment method

A pumping unit supplies pumping light to a fiber connecting medium; a light monitoring unit detects light power of multiple-wavelength light; and a control unit controls the pumping light based on light power detected by the light monitoring unit and connecting medium information indicating optical characteristics in the connecting medium. The connecting medium information includes information indicating a fiber type of the fiber connecting medium, information indicating a length of the fiber connecting medium, an average fiber loss coefficient of the fiber connecting medium and an intra-station loss value.
Owner:FUJITSU LTD

Multi-stage optical amplifier and broadband communication system

A multi-stage optical amplifier includes at least a distributed Raman amplifier fiber and a discrete amplifier fiber. The amplifier is configured to be coupled to at least one signal source that produces a plurality of signal wavelengths λs; and at least a first pump source that produces one or more pump beam wavelengths λp. A signal input port is coupled to the amplifier. A signal output port is coupled to the amplifier. The distributed Raman and discrete amplifier fibers are positioned between the signal input port and the signal output port. A first pump input port is coupled to a first end of the distributed Raman amplifier fiber. A second pump input port is coupled to a second end of the distributed Raman amplifier fiber. The first end is located closer to the signal input port than the second end. A third pump input port is coupled to the discrete amplifier fiber.
Owner:NEPTUNE SUBSEA IP LTD

Raman amplifier, raman amplifier control method, and optical communication system

The present invention provides a Raman amplifier and the like comprising a structure for keeping the flatness of power spectrum of Raman-amplified signal light. The Raman amplifier comprises an optical fiber for Raman-amplifying a plurality of signal channels of signal light having respective center optical frequencies different from each other; a pumping light supply section for supplying N (N being an integer of 2 or more) pumping channels of pumping light having respective center optical frequencies different from each other to the optical fiber; and a feedback section for detecting a part of the signal light Raman-amplified within the optical fiber when the pumping light is supplied thereto, and controlling the pumping light supply section such that the Raman-amplified signal light has a substantially flat power spectrum with respect to an optical frequency direction according to the result of detection. In particular, the feedback section divides the detected Raman-amplified signal light into N optical frequency ranges defined so as to include respective Raman amplification peaks as optical frequencies lower than respective center optical frequencies of the pumping channels of pumping light by an optical frequency shift of about 15 THz, and controls the pumping light supply section such that the Raman-amplified signal light has a power fluctuation of 2 dB or less in each of thus divided N optical frequency ranges.
Owner:SUMITOMO ELECTRIC IND LTD

Method of determining the gain characteristic of a distributed Raman amplifier

InactiveUS20050105167A1Accurate and simple to determineLaser detailsReflectometers using simulated back-scatterFiberAudio power amplifier
A method of determining the gain characteristic of a Raman amplifier includes the steps of launching a pump light signal into a fiber; preliminary adjusting the power of the pump light signal to a value that lies in a range where the amplified spontaneous emission noise originating from the pump light signal is substantially proportional to the on / off gain provided by the power of the pump light signal; monitoring the power of the amplified spontaneous emission noise signal; varying the power of the pump light signal; measuring a variation in the power of the amplified spontaneous emission noise signal corresponding to the pump power variation; and determining the gain characteristic of the amplifier from the relative variation in pump power and the measured variation in noise power.
Owner:ALCATEL LUCENT SAS

Raman amplification using a microstructured fiber

A Raman amplifier having a microstructured fiber and at least one pump laser, optically connected to one end of the microstructured fiber. The pump laser is adapted for emitting a pump radiation at a wavelength λp, and the microstructured fiber has a silica-based core surrounded by a plurality of capillary voids extending in the axial direction of the fiber. The core of microstructured fiber has at least one dopant added to silica, the dopant being suitable for enhancing Raman effect.
Owner:GOOGLE LLC

Raman amplifier system and method with integrated optical time domain reflectometer

Raman amplifier systems and methods with an integrated Optical Time Domain Reflectometer (OTDR) for integrated testing functionality include an amplifier system, an OTDR and telemetry subsystem, and a method of operation. The OTDR and telemetry subsystem is configured to operate in an OTDR mode when coupled to a line in port and to operate in a telemetry mode when coupled to a line out port. The OTDR and telemetry subsystem enables on-demand fiber testing while also operating as a telemetry channel that is both a redundant optical service channel (OSC) and provides a mechanism to monitor Raman gain over time. The OTDR and telemetry subsystem minimizes cost and space by sharing major optical and electrical components between the integrated OTDR and other functions on the Raman amplifier.
Owner:CIENA

Polymeric nanocompositions comprising self-assembled organic quantum dots

The present invention relates to a polymeric nanocomposition of matter comprising a plurality of organic quantum dots. The composition includes at least one functionalized polymer chain template and a plurality of size-tunable organic quantum dots self-assembled onto the functionalized polymer chain template. The self-assembled organic quantum dots may be nanometer-scale molecular aggregates with size tunable by the functionalized polymer chain template. The polymer nanocomposite may be coated onto the surface of Ag or Au nanoparticles to achieve surface enhanced properties, such as, surface enhanced Raman effect. One embodiment of the polymer nanocomposites has shown unusual physicochemical property, which is especially suitable for use in optical devices including optical fibers, waveguides, Raman amplifiers, splitters, multiplexers, demultiplexers, attenuators, modulators, switches, and combination of such structures.
Owner:XIAO DEQUAN

Optical communication system and method

An optical communication system that includes an optical network is disclosed having a plurality of nodes and a plurality of optical fiber links which includes optical fiber links that interconnect the nodes. Signals passing through the network are similarly pre-compensated and / or similarly post-compensated. The network preferably includes dispersion-managed optical fiber spans, and preferably further includes distributed amplification, preferably erbium amplifiers and / or Raman amplifiers. Preferably, the network is transparent.
Owner:CORNING INC

High power semiconductor laser with a large optical superlattice waveguide

The invention relates to high power semiconductor diode lasers of the type commonly used in opto-electronics, mostly as so-called pump lasers for fiber amplifiers in the field of optical communication, e.g. for an erbium-doped fiber amplifier (EDFA) or a Raman amplifier. Such a laser, having a single cavity and working in single transverse mode, is improved by placing a multilayer large optical superlattice structure (LOSL) into at least one of the provided cladding layers. This LOSL provides for a significantly improved shape of the exit beam allowing an efficient high power coupling into the fiber of an opto-electronic network.
Owner:LUMENTUM TECH UK LTD +1

Loss point detecting method and distributed Raman amplifier applying the same

A scattered light separated from the optical transmission path is monitored, a part of the excitation light is separated and is monitored, a reflected light which passes in a direction opposite to the direction in which the signal light passes through the optical transmission path is monitored, and, when the power of the excitation light monitored reaches a predetermined determination value, it is determined whether or not any loss point occurs based on a ratio between the power of the scattered light monitored and the power of the reflected light monitored.
Owner:FUJITSU LTD

Online matt Raman amplifier with automatic shutdown and starting and control method thereof

The invention relates to an online matt Raman amplifier with automatic shutdown and starting and a control method thereof. An output end of a pump laser unit group is connected with a pump end of a combiner, a public end of the combiner is connected with a transmission optical fiber, a signal end of the combiner is connected with an input end of a spectro-coupler, the big end of the spectro-coupler is a signal output end, the small end of the spectro-coupler is connected with the public end of a signal band-pass filter, a reflection end of the signal band-pass filter is connected with a detector of noise outside bandwidth, a transmission end is connected with a detector of signal plus the noise within the bandwidth, the signal output ends of the detector of the noise outside the bandwidth and the detector of the signal plus the noise within the bandwidth are respectively connected with a signal input end of a control unit, and the signal output end of the control unit is connected with the pump laser unit group. The method is to realize the signal power detection and the ASE compensation according to the method of detecting the ASE power of the Raman amplifier outside the working bandwidth and the total power of the ASE within the working bandwidth and the signal. The method can accurately detect the actual power of the signal and automatically shut down and start the amplifier according to the level of the signal power.
Owner:GUANGXUN SCI & TECH WUHAN

Method and apparatus for enabling multiple optical line termination devices to share a feeder fiber

A method and apparatus for enabling multiple optical line termination (OLT) devices to share a feeder fiber are disclosed. For example, the optical network comprises a plurality of optical line termination (OLT) devices, where each OLT device having a transceiver for sending and receiving optical signals. The optical network further comprises a wave division multiplexer (WDM) combiner, coupled to the plurality of OLT devices, for combining optical signals received from the plurality of OLT devices. The optical network further comprises an optical extender box comprising at least one hybrid SOA-Raman amplifier, wherein the optical extender box is coupled to the WDM combiner via a first standard single mode fiber section. Finally, the optical network further comprises at least one optical splitter coupled to the optical extender box via a second standard single mode fiber section.
Owner:AMERICAN TELEPHONE & TELEGRAPH CO

Gain flattened bi-directionally pumped Raman amplifier for WDM transmission systems

Raman amplification of a WDM signal with excellent gain flatness across a very large bandwidth is achieved. Co-propagating and counter-propagating Raman pumping are combined in the same fiber. Multiple pumping wavelengths are employed. Wavelengths employed for co-propagating pumping and wavelengths employed for counter-propagating pumping alternate in order of wavelength. In one embodiment, N co-propagating pump wavelengths and N+1 counter-propagating pump wavelengths are used. Alternatively, one may use N+1 co-propagating pump wavelengths and N counter-propagating pump wavelengths.
Owner:CISCO TECH INC

All-silicon raman amplifiers and lasers based on micro ring resonators

Devices for generating a laser beam are disclosed. The devices include a silicon micro ring having at least one silicon optical waveguide disposed at a distance from the micro ring. The radius and the cross-sectional dimension of the microring, the cross-sectional dimension of the waveguide, and the distance between the micro ring and the waveguide are determined such that one or more pairs of whispering gallery mode resonant frequencies of the micro ring are separated by an optical phonon frequency of silicon. Methods of manufacturing a lasing device including a silicon micro ring coupled with a silicon waveguide are also disclosed.
Owner:THE TRUSTEES OF COLUMBIA UNIV IN THE CITY OF NEW YORK

Optical fiber for raman amplification

InactiveUS20060033983A1Optimise either the optical or the thermal properties (or both) of an optical fiberImprove thermal stabilityLaser using scattering effectsActive medium materialFiberFrequency measurements
Raman amplifier having an optical fiber made of a tellurite glass is disclosed. The tellurite glass has at least two further metal oxides, the metals of said respective two oxides being selected from a first group of Nb, W, Ti, Tl, Ta, and Mo and from a second group of Nb, W, Ti, Pb, Sb, In, Bi, Tl, Ta, Mo, Zr, Hf, Cd, Gd, La, and Ba. The so obtained fiber has improved optical (Raman gain) and / or thermal (thermal stability index) properties. Alternatively, the tellurite based glass compositions of the fiber have at least one additional metal oxide, where the metal is selected among Nb, Ti, Tl, Ta, and Mo, the glass showing a particularly high Raman gain. The maximum Raman gain of these glasses is typically higher than 100 times of the maximum Raman gain of pure silica and the respective total cross-section of the Raman spectrum is typically greater than 100 times the total cross-section of pure silica, in the frequency measurement range of 200 cm−1 to 1080 cm−1.
Owner:PIRELLI & C

Raman amplifier and optical relay transmission system

An optical fiber propagates and amplifies a second signal light that is a wavelength-multiplexed signal of a first signal light of a plurality of wavelengths and a reference light that is out of a wavelength range of amplification. An excitation light source outputs an excitation light for amplifying the second signal light. A beam splitter splits a portion of the second signal light into the first signal light and the reference light. A signal light level detecting unit detects a level of the first signal light. A reference light level detecting unit detects a level of the reference light. A signal level setting unit calculates a target value for constantly maintaining a Raman gain, and controls the output level of the excitation light in such a way that the first signal level matches with the target value.
Owner:MITSUBISHI ELECTRIC CORP

Raman fiber amplifier and automatic gain control method thereof

The invention an automatic gain control method of a Raman fiber amplifier. The automatic gain control method includes extracting in-band or out-of-band ASE (amplified spontaneous emission) power; adjusting power of a pumping laser to enable output power of the Raman fiber amplifier (RFA) and ASE power generated by the RFA to tend to meeting a formula (3): PaseT=10*log(KG*10(Pout / 10)+CG), wherein PaseT, Pout refer to theoretical value of the ASE power generated by the RFA and the Raman output power respectively, and unit is dBm; G refers to Raman gain, and unit is dB; KG and CG refer to slope and intercept value under the gain. The automatic gain control method is wide in application range, can be used for gain control of Raman amplifiers small in input light power change and can be applied to gain control of Raman amplifiers quite wide in input light power change range.
Owner:WUXI TACLINK OPTOELECTRONICS TECH CO LTD

Reducing The Spectral Bandwidth Of Lasers

ActiveUS20140016655A1Power Loss MinimizationSimplifies compensating nonlinear chirp calculationLaser using scattering effectsMaterial analysis by optical meansFiberGrating
A laser system for semiconductor inspection includes a fiber-based fundamental light source for generating fundamental light that is then converted / mixed by a frequency conversion module to generate UV-DUV laser light. The fundamental light source includes a nonlinear chirp element (e.g., a Bragg grating or an electro-optic modulator) that adds a nonlinear chirp to the seed light laser system prior to amplification by the fiber amplifier(s) (e.g., doped fiber or Raman amplifiers). The nonlinear chirp includes an x2 or higher nonlinearity and is configured to compensate for the Self Phase Modulation (SPM) characteristics of the fiber-based amplifiers such that fundamental light is generated that has a spectral E95 bandwidth within five times that of the seed light. When multiple series-connected amplifiers are used, either a single nonlinear chirp element is provided before the amplifier string, or chirp elements are included before each amplifier.
Owner:KLA TENCOR TECH CORP

All-silicon raman amplifiers and lasers based on micro ring resonators

Methods of manufacturing a lasing device are provided by some embodiments, the methods including: creating a silicon micro ring with a predetermined radius and a predetermined first cross-sectional dimension; creating a silicon waveguide with a predetermined second cross-sectional dimension, the silicon waveguide spaced from the silicon micro ring by a predetermined distance; and wherein the predetermined distance, the predetermined radius, the predetermined first cross-sectional dimension, and the predetermined second cross-sectional dimension are determined so that at least one first whispering gallery mode resonant frequency of the silicon micro ring and at least one second whispering gallery mode resonant frequency of the silicon micro ring are separated by an optical phonon frequency of silicon.
Owner:THE TRUSTEES OF COLUMBIA UNIV IN THE CITY OF NEW YORK

Semiconductor laser module and Raman amplifier

A semiconductor laser module has a Fabry-Perot type semiconductor laser device, an optical fiber, and first and second lenses. The tip of the optical fiber, on which the laser beam falls, is askew polished. The optical fiber is fixed in such a manner that the axis of the optical fiber makes an angle with respect to an optical axis of the laser beam. Coatings that avoid reflection are formed on the tip of the optical fiber, and on the first and second lenses.
Owner:FURUKAWA ELECTRIC CO LTD

Extra-long station spacing emergency communication method of electric power optical transmission network

The invention discloses an extra-long station spacing emergency communication method. In the method, optical amplification devices are arranged at two line interruption ends; and a new optical transmission channel is established in the middle of a line by using an optical cable, and comprises a forward error correction (FEC) coding device, a power amplifier EDFA-BA, a Raman amplifier FRA, a preliminary amplifier EDFA-PA and dispersion compensation equipment DCM which are configured in turn, wherein the power amplifier EDFA-BA is connected with the Raman amplifier FRA by using a G.652 optical cable. The extra-long station spacing emergency communication method can reduce the use of relay equipment, solve the problems of optical fiber line interruption, relay station damage or maintenance, optical fiber ageing and the like of an electric power system; and by configuring different optical amplification schemes, a new transmission channel can be quickly established by using redundant or backup optical fibers, thereby fulfilling the aim of emergency communication.
Owner:STATE GRID ANHUI ELECTRIC POWER +1

Method and apparatus for providing passive optical networks with extended reach and/or split

A method and apparatus for providing passive optical networks with extended reach and / or splitting ratio are disclosed. For example, the optical network comprises a first optical line termination (OLT) device having a transceiver for sending and receiving optical signals. The optical network further comprises an optical extender box comprising at least one hybrid SOA-Raman amplifier, wherein the optical extender box is coupled to the first optical line termination device via a first standard single mode fiber section. Finally, the optical network further comprises an optical splitter coupled to the optical extender box via a second standard single mode fiber section.
Owner:AMERICAN TELEPHONE & TELEGRAPH CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products