Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

218 results about "Raman gain" patented technology

Raman gain is optical gain (amplification) arising from stimulated Raman scattering. It can occur in transparent solid media (e.g. optical fibers), liquids and gases under the influence of intense pump light, and is used in Raman amplifiers and Raman lasers.

Cascaded pump delivery for remotely pumped erbium-doped fiber amplifiers

A method for pumping remote optically-pumped fiber amplifiers (ROPAs) in fiber-optic telecommunication systems is disclosed which uses cascaded Raman amplification to increase the maximum amount of pump power that can be delivered to the ROPA. According to the prior art, high power at the ROPA pump wavelength, λp, is launched directly into the fiber and the maximum launch power is limited by the onset of pump depletion by Raman noise and oscillations due to the high Raman gain at ˜(λp+100) nm. In preferred embodiments of the present invention, a ‘primary’ pump source of wavelength shorter than λp is launched into the delivery fiber along with two or more significantly lower-power ‘seed’ sources, among which is included one at λp. The wavelength and power of the seed source(s) are chosen such that, when combined with the high-power primary source, a series, n, where n≧2, of Raman conversions within the fiber ultimately leads to the development of high power at λp. In another embodiment, one or more of the seed sources at wavelengths shorter than λp are replaced by reflecting means to return, into the fiber, backward-travelling amplified spontaneous Raman scattered light resulting from high power in the fiber at a wavelength one Raman shift below the particular seed wavelength. In either case, the high power at λp is developed over a distributed length of the fiber, reaching its maximum some distance into the fiber and exceeding the maximum power possible at that point with the prior art.
Owner:MPB COMM

Random-distribution feedback optical fiber laser

The invention relates to a random-distribution feedback optical fiber laser which can realize stable, space-irrelevant and continuous laser output, and belongs to the technical field of the optical fiber laser. The random-distribution feedback optical fiber laser comprises a pump laser, a wavelength division multiplexer, a fiber bragg grating, an Er-doped optical fiber, an optical fiber Raman laser and a long monomode optical fiber. The reflection effect of the fiber bragg grating is combined with the distributed Rayleigh scattering effect of the optical fiber to form a distributed random feedback optical resonant cavity; and the light is subjected to gain amplification by an Er-doped optical fiber and the stimulated Raman scattering effect. Compared with the random-distribution feedback optical fiber laser reported before, the threshold value of the pump laser and the length of the monomode optical fiber can be reduced, and the limitation on stimulated emission wavelength and the wavelength number by a Rayleigh gain peak is broken through, thereby realizing the purpose of tuning the laser wavelength. The random-distribution feedback optical fiber laser is suitable for fields, such as remote optical fiber sensing, remote communication and the like.
Owner:唐山市神州科贸有限公司

Method and device for strengthening atom steam optical filtering signals by combined Raman

The invention discloses a method and a device for strengthening atom steam optical filtering signals by combined Raman. The method combines two characteristics of atom excited Raman gain and Faraday anomalous dispersion effect of atom steam in a single atom steam bubble. The device for realizing the method comprises a narrow band polarization beam splitter, two holophotes, an atom steam bubble with an external magnetic field with a part of size, an aperture slot with adjustable pore size and a pair of Gran Thomson prisms. In the invention, the atom steam optical filtering signals are strengthened by above 10 times in the atom steam bubble with the external magnetic field with a part of size through vertical direction of weak signal light and pump laser polarization and matching frequency, and scattered light and passband external background light of pumping lasers are inhibited by an optical polarization device, therefore, the device has the advantages of high suppression ratio (-105), adjustable optical filtering wavelength and the like. The invention remarkably enhances the atom steam optical filtering characteristic and the detection sensitivity and has important significance to application in the fields of remote laser communication, free space quantum communication and the like.
Owner:WUHAN INST OF PHYSICS & MATHEMATICS CHINESE ACADEMY OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products