Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2947 results about "Polarization beam splitter" patented technology

Polarization Beam Splitter/Combiner. Polarization beam splitter can be used as beam splitters or beam combiners. The output beam which are parallel to input beam is called p-polarized beam while the orthogonal output beam is defined as s-polarized beam.

Reflective LCD projection system using wide-angle Cartesian polarizing beam splitter and color separation and recombination prisms

An optical imaging system including an illumination system, a Cartesian PBS, and a prism assembly. The illumination system provides a beam of light, the illumination system having an f / # less than or equal to 2.5. The Cartesian polarizing beam-splitter has a first tilt axis, oriented to receive the beam of light. A first polarized beam of light having one polarization direction is folded by the Cartesian polarizing beam splitter and a second polarized beam of light having a second polarization direction is transmitted by the Cartesian polarizing beam splitter. The Cartesian polarizing beam splitter nominally polarizes the beam of light with respect to the Cartesian beam-splitter to yield the first polarized beam in the first polarization direction. The color separation and recombination prism is optically aligned to receive the first polarized beam. The prism has a second tilt axis, a plurality of color separating surfaces, and a plurality of exit surfaces. The second tilt axis maybe oriented perpendicularly to the first tilt axis of the Cartesian polarizing beam-splitter so that the polarized beam is nominally polarization rotated into the second polarization direction with respect to the color separating surfaces and a respective beam of colored light exits through each of the exit surfaces. Each imager is placed at one of the exit surface of the color separating and recombining prism to receive one of the respective beams of colored light, wherein each imager can separately modulate the polarization state of the beam of colored light.
Owner:3M INNOVATIVE PROPERTIES CO

Method and apparatus for reducing laser speckle using polarization averaging

A method and apparatus for reducing speckle uses polarization averaging. A polarizing beam splitter divides a first polarized laser output into a second polarized laser output and a third polarized laser output. A plurality of mirrors creates an optical path difference between the second and third polarized laser outputs. The optical path difference is at least about a coherence length for the first polarized laser output. The second and third polarized laser outputs are combined into a fourth laser output, which illuminates a depolarizing screen. If a human eye or an optical system having a intensity detector views the depolarizing screen, the eye or the intensity detector will detect reduced speckle, which results from uncorrelated speckle patterns created by the second polarized laser output and the third polarized laser output. A first alternative embodiment of the invention functions without the optical path difference being at least about the coherence length. In the first alternative embodiment, a piezoelectric transducer varies an optical path length by at least about a half wavelength of the first polarized laser output. By varying the optical path length by a sufficient frequency, the eye or the intensity detector will detect the reduced speckle. A second alternative embodiment combines two orthogonally polarized laser outputs, from two lasers, into a combined laser output. The combined laser output illuminates the depolarizing screen. A third alternative embodiment rotates the first laser output with a rotation frequency to form a rotating polarized laser output, which illuminates the depolarizing screen.
Owner:SILICON LIGHT MACHINES CORP

Color laser printer

A color laser printer producing a color image using a single laser scanning unit includes a lighting unit including first and second laser diodes emitting beams of one polarization, a polarization prism transmitting or reflecting incident beams depending on a direction of polarization, and third and fourth laser diodes disposed in a different direction from the first and second laser diodes with respect to the polarization prism, a rotary polygon mirror that reflects the beam emitted along the same path from the lighting unit, an f-θ lens that focuses the beam reflected by the rotary polygon mirror, first and second polarization beam splitters, each of which transmits or reflects the beam passing through the f-θ lens depending on the direction of the polarization, and first through fourth photoconductive units on which the beams reflected and transmitted through the first and second polarization beam splitters are incident. In the color laser printer, lengths of optical paths between the f-θ lens and each of the first through fourth photoconductive units are equal. The color laser printer is constructed such that a plurality of light sources emitting the beams of one polarization are arranged separately and the beams emitted from the light sources are combined by the polarization prism to enter the f-θ lens, thereby reducing a thickness of the f-θ lens.
Owner:HEWLETT PACKARD DEV CO LP

Projection display systems

A projection apparatus has a first light beam having a first state of polarization and containing a first set of primary colors, a first light modulator arrangement for spatially modulating the polarization state of the first light beam to encode a first image thereon in the first set of primary colors, a second light beam having a second state of polarization and containing a second set of primary colors, and a second light modulator arrangement for spatially modulating the polarization state of the second light beam to encode a second image thereon. A polarizing beam splitter having first and second input ports to admit the first and second encoded light beams. Light of one polarization state incident on the first port is transmitted to the output port and light of another polarization state incident on the second port is reflected to said output port so that said transmitted and reflected light is combined into a common output beam at said output port. The first and second images having different polarizations contained in the output beam projected onto a display screen can be viewed with the aid of glasses with selective color filters responsive to the first and second sets of primary colors. By using different sets of primary colors considerable efficiencies and economies can be realized relative to a pure polarization-based system.
Owner:BOOTHROYD SIMON
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products