Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

1351 results about "Optical detectors" patented technology

Optical Detector. a device whose change in state or response under the action of a flux of optical radiation is used to detect the radiation, to measure the radiation, or to record and analyze images of the radiating object. Optical detectors constitute the broadest class of radiation detectors.

Coaxial catheter instruments for ablation with radiant energy

InactiveUS20050038419A9Rapid and effective photoablationLess timeStentsUltrasound therapyCoaxial catheterTarget tissue
Ablation methods and instruments are disclosed for creating lesions in tissue, especially cardiac tissue for treatment of arrhythmias and the like. Percutaneous ablation instruments in the form of coaxial catheter bodies are disclosed having at least one central lumen therein and having one or more balloon structures at the distal end region of the instrument. The instruments include an energy emitting element which is independently positionable within the lumen of the instrument and adapted to project radiant energy through a transmissive region of a projection balloon to a target tissue site. The instrument can optionally include at least one expandable anchor balloon disposed about, or incorporated into an inner catheter body designed to be slid over a guidewire. This anchor balloon can serve to position the device within a lumen, such as a pulmonary vein. A projection balloon structure is also disclosed that can be slid over the first (anchor balloon) catheter body and inflated within the heart, to define a staging from which to project radiant energy. An ablative fluid can also be employed outside of the instrument (e.g., between the balloon and the target region) to ensure efficient transmission of the radiant energy when the instrument is deployed. In another aspect of the invention, generally applicable to a wide range of cardiac ablation instruments, mechanisms are disclosed for determining whether the instrument has been properly seated within the heart, e.g., whether the device is in contact with a pulmonary vein and/or the atrial surface, in order to form a lesion by heating, cooling or projecting energy. This contact-sensing feature can be implemented by an illumination source situated within the instrument and an optical detector that monitors the level of reflected light. Measurements of the reflected light (or wavelengths of the reflected light) can thus be used to determine whether contact has been achieved and whether such contact is continuous over a desired ablation path.

Lottery ticket validation system

A lottery ticket validation system validates a probability lottery ticket that has predetermined play rules and that includes a plurality of player removable material covering play spots that in turn cover play indicia located in predetermined locations on the ticket. In addition, validation data is printed on the ticket in the form of a bar code. The validation system includes a housing, a controller located in the housing, a document channel configured in the housing, a sensor, a data reader, a transport mechanism, a scanning circuit, a memory, a processor, and a stigmatization circuit. The sensor includes an optical detector located in the housing and operatively connected to the controller. The data reader is operatively connected to the controller and is adapted to read the bar code. The transport mechanism is located in the housing and is operatively connected to the controller. The transport mechanism includes at least one roller, a plurality of ticket sensors, and a motor. The roller is effective to transport the probability lottery ticket through the document channel such that at least a portion of the play spots is substantially aligned with the sensor and such that the bar code is substantially aligned with the data reader. The scanning circuit is operatively connected to the sensor and to the controller and scans at least a portion of the probability lottery ticket for the player removable material covering the play spots and generates a validation signal indicating which, if any, of the player removable material covering the play spots has been removed from the probability lottery ticket. The memory is operatively connected to the controller and contains data representing the probability lottery ticket, including at least a portion of the validation data obtained from the data reader, and removed play spot data obtained from the validation signal. The processor is operatively connected to the controller and the memory and relates the portion of the validation data to the removed play spot data to verify the probability lottery ticket and to cause the transport mechanism to exit the probability lottery ticket from the document channel. The stigmatization circuit is operatively connected to the processor and is adapted to change at least a portion of a color of the probability lottery ticket prior to the transport mechanism exiting the probability ticket from the document channel.

Esophageal diagnostic sensor

Disclosed is an esophageal catheter that is capable of simultaneously measuring impedance, hydrostatic pressure and contact pressure in an esophagus from peristaltic waves, esophageal fluid and the transit bolus in a single test episode. Circumferential impedance sensors include sensing electrodes that are oppositely disposed on the circumferential impedance sensor, and reference electrodes that are also oppositely disposed on the circumferential impedance sensor and interspersed between the sensing electrodes. Accurate impedance measurements can be made in this fashion in a transverse direction in the esophagus. A hydrostatic pressure sensor is disposed at the distal tip of the esophageal probe that has a rigid cover to protect the hydrostatic pressure sensor from contact pressures of the esophagus. In this manner, the hydrostatic pressure sensor can provide purely hydrostatic pressure data from the fluids in the esophagus. Disposed above the hydrostatic pressure sensor, at the distal end of the probe, is an optical contraction sensor that detects both hydrostatic and contact pressure, by detecting the occlusion created by a flexible membrane disposed between an optical source and an optical detector mounted longitudinally in the probe, in response to contractions at the esophagus. The output of the hydrostatic pressure sensor and the optical contraction sensor permits estimations to be made of the contact pressures created by the esophagus.

Multi-channel LED object detection system and method

A method for detecting an object located in an environment and a multi-channel LED object detection system for detecting an object located in an environment are provided. The method includes providing a Light-Emitting-Diode (LED) light source having a wide field-of-illumination and orienting the LED light source for the wide field-of-illumination to encompass the width of the environment; providing an optical detector having a wide field-of-view and orienting the optical detector for the wide field-of-view to encompass the width of the environment, the optical detector having a plurality of sub-detectors, each having an individual narrow field-of-view, each individual narrow field-of-view creating a channel in the wide field-of-view; driving the LED light source into emitting light toward the environment, the width of the environment being illuminated by the light, the light having an emitted light waveform; receiving and acquiring an individual complete trace of a reflection/backscatter of the emitted light on the object in the environment at each sub-detector of the plurality, thereby combining the individual narrow field-of-view to create the wide field-of-view encompassing the width of the environment and thereby receiving and acquiring an individual complete trace for each channel; converting the acquired individual complete trace of the reflection/backscatter into an individual digital signal; and detecting and identifying at least one of a presence of an object in the environment, a position of the object in the environment, a distance between the object and the LED light source and a visibility in the environment, using the emitted light waveform and at least one of the individual digital signal.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products