Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

111 results about "Thin-film interference" patented technology

Thin-film interference is a natural phenomenon in which light waves reflected by the upper and lower boundaries of a thin film interfere with one another, either enhancing or reducing the reflected light. When the thickness of the film is an odd multiple of one quarter-wavelength of the light on it, the reflected waves from both surfaces interfere to cancel each other. Since the wave cannot be reflected, it is completely transmitted instead. When the thickness is a multiple of a half-wavelength of the light, the two reflected waves reinforce each other, increasing the reflection and reducing the transmission. Thus when white light, which consists of a range of wavelengths, is incident on the film, certain wavelengths (colors) are intensified while others are attenuated. Thin-film interference explains the multiple colors seen in light reflected from soap bubbles and oil films on water. It is also the mechanism behind the action of antireflection coatings used on glasses and camera lenses.

Method for determining the temperature of semiconductor substrates from bandgap spectra

An optical method for measuring the temperature of a substrate material with a temperature dependent band edge. In this method both the position and the width of the knee of the band edge spectrum of the substrate are used to determine temperature. The width of the knee is used to correct for the spurious shifts in the position of the knee caused by: (i) thin film interference in a deposited layer on the substrate; (ii) anisotropic scattering at the back of the substrate; (iii) the spectral variation in the absorptance of deposited layers that absorb in the vicinity of the band edge of the substrate; and (iv) the spectral dependence in the optical response of the wavelength selective detection system used to obtain the band edge spectrum of the substrate. The adjusted position of the knee is used to calculate the substrate temperature from a predetermined calibration curve. This algorithm is suitable for real-time applications as the information needed to correct the knee position is obtained from the spectrum itself. Using a model for the temperature dependent shape of the absorption edge in GaAs and InP, the effect of substrate thickness and the optical geometry of the method used to determine the band edge spectrum, are incorporated into the calibration curve.
Owner:JOHNSON SHANE R +1

Preparation method and application of graphene oxide array color-changing film/composite film

The invention belongs to the technical field of chemical materials, and particularly relates to a preparation method of a graphene oxide film or composite film capable of presenting different colors in different gas environments. The graphene oxide film can be applied in preparing gas sensors for detecting humidity and harmful gas. The preparation method specifically includes: preparing a grapheneoxide solution and a macromolecular solution, sequentially spin-coating the solutions on a modified silicon wafer substrate through a spin coater, and drying to obtain a color-changing graphene oxide/macromolecular composite film. Dispersity and selectivity of a graphene gas-sensitive material are improved; functionalized macromolecules are introduced, so that graphene lamellar structure is stabilized while gas-sensitive selection is improved, and a graphene/macromolecular schemochrome thin film which is flat and controllable in number of layer is prepared; a characteristic that conventionalgraphene gas-sensitive materials depend on electrochemical detection is broken through, an organic small molecule visual detection assembly array based on interference light response is built, and real-time, quick, accurate and visual detection of humidity and harmful gas is realized.
Owner:QILU UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products