Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

294 results about "Absorptance" patented technology

Absorptance of the surface of a material is its effectiveness in absorbing radiant energy. It is the ratio of the absorbed to the incident radiant power. This should not be confused with absorbance and absorption coefficient.

Solar selective coating having higher thermal stability useful for harnessing solar energy and a process for the preparation thereof

The present invention provides an improved solar selective multilayer coating having higher thermal stability and a process for the preparation thereof. Solar selective coatings having higher thermal stability are useful in solar steam generation, solar steam turbines to produce electricity and also on automobile engine components. In the present invention, a tandem stack of three layers of TiAlN, TiAlON and Si3N4 is deposited on metal and non-metal substrates at room temperature using a planar reactive direct current magnetron sputtering process. The first two layers function as the absorber and the third antireflection layer further enhances the coating's absorptance. The solar selective coatings were annealed in air and vacuum to test the thermal stability at different temperatures and durations. The coatings of the present invention deposited on copper substrates are stable in air up to a temperature of 625° C. for a duration of 2 hours and exhibit higher solar selectivity in the order of 9-10 and these coating also show no change in the absorptance and the emittance values even after vacuum annealing at 600° C. for 3 hours. Coatings deposited on copper substrates showed no significant degradation in the optical properties even after continuous heating in air at 525° C. for 50 hours. The solar selective coatings of the present invention exhibit high hardness, high oxidation resistance, chemical inertness and stable microstructure.
Owner:COUNCIL OF SCI & IND RES

Method for determining the temperature of semiconductor substrates from bandgap spectra

An optical method for measuring the temperature of a substrate material with a temperature dependent band edge. In this method both the position and the width of the knee of the band edge spectrum of the substrate are used to determine temperature. The width of the knee is used to correct for the spurious shifts in the position of the knee caused by: (i) thin film interference in a deposited layer on the substrate; (ii) anisotropic scattering at the back of the substrate; (iii) the spectral variation in the absorptance of deposited layers that absorb in the vicinity of the band edge of the substrate; and (iv) the spectral dependence in the optical response of the wavelength selective detection system used to obtain the band edge spectrum of the substrate. The adjusted position of the knee is used to calculate the substrate temperature from a predetermined calibration curve. This algorithm is suitable for real-time applications as the information needed to correct the knee position is obtained from the spectrum itself. Using a model for the temperature dependent shape of the absorption edge in GaAs and InP, the effect of substrate thickness and the optical geometry of the method used to determine the band edge spectrum, are incorporated into the calibration curve.
Owner:JOHNSON SHANE R +1

Method for manufacturing photoelectric conversion device

The purpose is manufacturing a photoelectric conversion device with excellent photoelectric conversion characteristics typified by a solar cell with effective use of a silicon material. A single crystal silicon layer is irradiated with a laser beam through an optical modulator to form an uneven structure on a surface thereof. The single crystal silicon layer is obtained in the following manner; an embrittlement layer is formed in a single crystal silicon substrate; one surface of a supporting substrate and one surface of an insulating layer formed over the single crystal silicon substrate are disposed to be in contact and bonded; heat treatment is performed; and the single crystal silicon layer is formed over the supporting substrate by separating part of the single crystal silicon substrate fixed to the supporting substrate along the embrittlement layer or a periphery of the embrittlement layer. Then, irradiation with a laser beam is performed on a separation surface of the single crystal silicon layer through an optical modulator which modulates light intensity regularly, and unevenness is formed on the surface. Due to the unevenness, reflection of incident light is reduced and absorptance with respect to light is improved, therefore, photoelectric conversion efficiency of the photoelectric conversion device is improved.
Owner:SEMICON ENERGY LAB CO LTD

Nano titanic oxide photocatalyst responding to visible light and preparation method thereof

The invention discloses a nanometer titanium dioxide photocatalyst responding visible light with high absorbance and a wide wavelength range on the visible light. The photocatalyst is characterized in that a mass ratio of nanometer TiO2 to active carbon is 1:5-15; a mass ratio of metal silver to the nanometer TiO2 is 0.5-2:100; and a mass ratio of metal copper or iron or rhodium or platinum or gold or tin to the nanometer TiO2 is 0-2:100. The method for preparing the photocatalyst comprises the following steps: preparing a titanium ester solution and a soluble metal salt solution to be mixed and evenly stirred; evenly loading TiO2 particles and metal ions onto the surface of the active carbon by a sol-gel method; and carrying out thermal treatment under the protection of inert gases at a temperature of between 300 and 600 DEG C for 2 to 6 hours so as to prepare the metal doped and active carbon loaded anatase type TiO2 photocatalyst. The photocatalyst and the method have a simple process; compared with the prior loading type visible light photocatalyst, the prepared product can sufficiently utilize sunlight, has the absorbance to the visible light reaching about 85 percent and wide wavelength range, can be industrially applied, has the characteristics of energy conservation, environmental protection and the like; meanwhile, due to larger particles of the active carbon, recycle of the photocatalyst is convenient, and treatment cost is reduced.
Owner:HUNAN CITY UNIV

Non-vacuum solar spectrum selective absorption film and preparation method thereof

The invention provides a non-vacuum solar spectrum selective absorption film and a preparation method thereof. The absorption film comprises a stainless steel or copper substrate which is successivelyprovided with a titanium-aluminum film, a titanium-aluminum-nitrogen film, a titanium-aluminum-oxygen-nitrogen film and a titanium-aluminum-oxygen film from inside to outside, wherein the films are prepared by adopting multi-arc ion plating; a target material adopts titanium-aluminum alloy target of which the atomic ratio of titanium to aluminum is 50:50; and the content of nitrogen and/or oxygenin the films is controlled by controlling the flow of argon, nitrogen and oxygen in the atmosphere of multi-arc ion plating. The method comprises: (1) selecting and cleaning a substrate material; (2)baking the substrate material in a vacuum sputtering chamber of a multi-target compound coating machine; (3) performing argon-ion bombardment on the surface of the substrate material; (4) coating thesubstrate material; and (5) performing annealing treatment. The absorption film has the advantages of high absorptivity alpha in a solar spectral range (0.3 to 2.5 microns), low emissivity epsilon inan infrared region (2 to 50 microns) and the characteristic of resisting high-temperature oxidation, thereby meeting the requirements of solar high-temperature utilization.
Owner:GRIMAT ENG INST CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products