Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

20708 results about "Atomic physics" patented technology

Atomic physics is the field of physics that studies atoms as an isolated system of electrons and an atomic nucleus. It is primarily concerned with the arrangement of electrons around the nucleus and the processes by which these arrangements change. This comprises ions, neutral atoms and, unless otherwise stated, it can be assumed that the term atom includes ions.

Programmable metallization cell structure and method of making same

A programmable metallization cell ("PMC") comprises a fast ion conductor such as a chalcogenide-metal ion and a plurality of electrodes (e.g., an anode and a cathode) disposed at the surface of the fast ion conductor and spaced a set distance apart from each other. Preferably, the fast ion conductor comprises a chalcogenide with Group IB or Group IIB metals, the anode comprises silver, and the cathode comprises aluminum or other conductor. When a voltage is applied to the anode and the cathode, a non-volatile metal dendrite grows from the cathode along the surface of the fast ion conductor towards the anode. The growth rate of the dendrite is a function of the applied voltage and time. The growth of the dendrite may be stopped by removing the voltage and the dendrite may be retracted by reversing the voltage polarity at the anode and cathode. Changes in the length of the dendrite affect the resistance and capacitance of the PMC. The PMC may be incorporated into a variety of technologies such as memory devices, programmable resistor/capacitor devices, optical devices, sensors, and the like. Electrodes additional to the cathode and anode can be provided to serve as outputs or additional outputs of the devices in sensing electrical characteristics which are dependent upon the extent of the dendrite.
Owner:AXON TECH +1

PMOS transistor with compressive dielectric capping layer

A salicide layer is deposited on the source/drain regions of a PMOS transistor. A dielectric capping layer having residual compressive stress is formed on the salicide layer by depositing a plurality of PECVD dielectric sublayers and plasma-treating each sublayer. Compressive stress from the dielectric capping layer is uniaxially transferred to the PMOS channel through the source-drain regions to create compressive strain in the PMOS channel. To form a compressive dielectric layer, a deposition reactant mixture containing A1 atoms and A2 atoms is provided in a vacuum chamber. Element A2 is more electronegative than element A1, and A1 atoms have a positive oxidation state and A2 atoms have a negative oxidation state when A1 atoms are bonded with A2 atoms. A deposition plasma is generated by applying HF and LF radio-frequency power to the deposition reactant mixture, and a sublayer of compressive dielectric material is deposited. A post-treatment plasma is generated by applying HF and LF radio-frequency power to a post-treatment gas that does not contain at least one of A1 atoms and A2 atoms. Compressive stress in the dielectric sublayer is increased by treating the sublayer in the post-treatment plasma. Processes of depositing a dielectric sublayer and post-treating the sublayer in plasma are repeated until a desired thickness is achieved. The resulting dielectric layer has residual compressive stress.

Plasma immersion ion implantation reactor having an ion shower grid

A plasma immersion ion implantation process for implanting a selected species at a desired ion implantation depth profile in a workpiece is carried out in a reactor chamber with an ion shower grid that divides the chamber into an upper ion generation region and a lower process region, the ion shower grid having plural elongate orifices oriented in a non-parallel direction relative to a surface plane of the ion shower grid. The process includes placing a workpiece in the process region, the workpiece having a workpiece surface generally facing the surface plane of the ion shower grid, and furnishing the selected species into the ion generation region in gaseous, molecular or atomic form and evacuating the process region at an evacuation rate sufficient to create a pressure drop across the ion shower grid from the ion generation region to the process region of about a factor of at least four. The process further includes applying plasma source power to generate a plasma of the selected species in the ion generation region, and applying a grid potential to the ion shower grid to create a flux of ions from the plasma through the grid and into the process region. The process also includes applying a sufficient bias voltage to at least one of: (a) the workpiece, (b) the grid, relative to at least one of: (a) the workpiece, (b) a plasma in the ion generation region, (c) a surface of the chamber, to accelerate the flux of ions to a kinetic energy distribution generally corresponding to the desired ion implantation depth profile in the workpiece.

Mass spectrometry with segmented RF multiple ion guides in various pressure regions

A mass spectrometer is configured with individual multipole ion guides, configured in an assembly in alignment along a common centerline wherein at least a portion of at least one multipole ion guide mounted in the assembly resides in a vacuum region with higher background pressure, and the other portion resides in a vacuum region with lower background pressure. Said multipole ion guides are operated in mass to charge selection and ion fragmentation modes, in either a high or low pressure region, said region being selected according to the optimum pressure or pressure gradient for the function performed. The diameter, lengths and applied frequencies and phases on these contiguous ion guides may be the same or may differ. A variety of MS and MS/MSn analysis functions can be achieved using a series of contiguous multipole ion guides operating in either higher background vacuum pressures, or along pressure gradients in the region where the pressure drops from high to low pressure, or in low pressure regions. Individual sets of RF, +/−DC and resonant frequency waveform voltage supplies provide potentials to the rods of each multipole ion guide allowing the operation of ion transmission, ion trapping, mass to charge selection and ion fragmentation functions independently in each ion guide. The presence of background pressure maintained sufficiently high to cause ion to neutral gas collisions along a portion of each multiple ion guide linear assembly allows the conducting of Collisional Induced Dissociation (CID) fragmentation of ions by axially accelerating ions from one multipole ion guide into an adjacent ion guide. Alternatively ions can be fragmented in one or more multipole ion guides using resonant frequency excitation CID. A multiple multipole ion guide assembly can be configured as the primary mass analyzer in single or triple quadrupole mass analyzers with or without mass selective axial ejection. Alternatively, the multiple multipole ion guide linear assembly can be configured as part of a hybrid Time-Of-Flight, Magnetic Sector, Ion Trap or Fourier Transform mass analyzer.

Dipole antenna of RF chip

The invention discloses a dipole antenna of an RF chip, comprising two metal sheets, a feeder line and an earth wire, wherein two tabulate metal sheets are mutually parallel and are both provided with short circuit points which are respectively used for connecting the feeder line and the earth wire. The dipole antenna of the RF chip of the invention integrates novel artificial electromagnetic materials, thus the dipole antenna has abundant chromatic dispersion characteristics so as to form various radioactive modes, which not only can avoid fussy impedance matching network, but also can tune by adjusting a feeder line feeding and coupling mode, an earth wire accessing mode, the topological structure of metal microstructure, the position of metalizing through holes as well as the short circuit point position among the feeder line, the earth wire, an upper layer of sheet metal and a lower layer of sheet metal, thus providing great convenience for multiple frequency point impedance matching; meanwhile, the dipole antenna of the invention adopts a chip mode to fully utilize radiating area to approach to the Chu Limit antenna dimension limit principle, the construction of double chips also brings technical advantages for limiting electromagnetic wave and reducing effect on antenna operation by the outside.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products