Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

221 results about "Neutral particle" patented technology

In physics, a neutral particle is a particle with no electric charge. This is not to be confused with a truly neutral particle, a neutral particle that is also identical to its own antiparticle.

Crosslinked hyperbranched polyalcohol composite nano filter membrance and method of preparing the same

The invention discloses a crosslinking hyper branched polymer composite nanofiltration membrane as well as the preparation method thereof. The crosslinking hyper branched polymer composite nanofiltration membrane is prepared by taking an ultrafiltration membrane as a basement membrane and crosslinking hyper branched polymer as a selecting layer through hyper branched polymer and the interfacial polymerization of polybasic acid, polybasic acyl chloride, polybasic anhydride and polybasic amine; and the interfacial polymerization takes the mixed solution of water and ethanol as the water phase and n-hexane, n-heptane or n-octane as the organic phase. As the hyper branched polymer has the spheroidal structure, a plurality of nano-voids exist in the interior of the molecule, so as to enable the selecting layer of the crosslinking hyper branched polymer composite nanofiltration membrane to be looser, and leads the nanofiltration membrane to maintain high flux and retention rate under the lower operating pressure. The nanofiltration membrane can be used in the fields of medicament, foodstuff, environmental protection, etc. The composite nanofiltration membrane is applicable to the separation and the condensation of high valence ions, low valence ions, neutral particles, drugs, food additives, etc.
Owner:ZHEJIANG UNIV

Fast recovery electron multiplier

An improved electron multiplier bias network that limits the response of the multiplier when the multiplier is faced with very large input signals, but then permits the multiplier to recover quickly following the large input signal. In one aspect, this invention provides an electron multiplier, having a cathode that emits electrons in response to receiving a particle, wherein the particle is one of a charged particle, a neutral particle, or a photon; an ordered chain of dynodes wherein each dynode receives electrons from a preceding dynode and emits a larger number of electrons to be received by the next dynode in the chain, wherein the first dynode of the ordered chain of dynodes receives electrons emitted by the cathode; an anode that collects the electrons emitted by the last dynode of the ordered chain of dynodes; a biasing system that biases each dynode of the ordered chain of dynodes to a specific potential; a set of charge reservoirs, wherein each charge reservoir of the set of charge reservoirs is connected with one of the dynodes of the ordered chain of dynodes; and an isolating element placed between one of the dynodes and its corresponding charge reservoir, where the isolating element is configured to control the response of the electron multiplier when the multiplier receives a large input signal, so as to permit the multiplier to enter into and exit from saturation in a controlled and rapid manner.
Owner:BIO RAD LAB INC

Dose cup located near bend in final energy filter of serial implanter for closed loop dose control

An ion implantation system having a dose cup located near a final energy bend of a scanned or ribbon-like ion beam of a serial ion implanter for providing an accurate ion current measurement associated with the dose of a workpiece or wafer. The system comprises an ion implanter having an ion beam source for producing a ribbon-like ion beam. The system further comprises an AEF system configured to filter an energy of the ribbon-like ion beam by bending the beam at a final energy bend. The AEF system further comprises an AEF dose cup associated with the AEF system and configured to measure ion beam current, the cup located substantially immediately following the final energy bend. An end station downstream of the AEF system is defined by a chamber wherein a workpiece is secured in place for movement relative to the ribbon-like ion beam for implantation of ions therein. The AEF dose cup is beneficially located up stream of the end station near the final energy bend mitigating pressure variations due to outgassing from implantation operations at the workpiece. Thus, the system provides accurate ion current measurement before such gases can produce substantial quantities of neutral particles in the ion beam, generally without the need for pressure compensation. Such dosimetry measurements may also be used to affect scan velocity to ensure uniform closed loop dose control in the presence of beam current changes from the ion source and outgassing from the workpiece.
Owner:AXCELIS TECHNOLOGIES

Novel gas-homogenizing structure

The invention relates to the technical field of plasma etching, deposition, and neutral particle etching equipment, and particularly relates to a gas-homogenizing structure applicable to plasma or neutral particle etching systems. The gas-homogenizing structure is disposed at the lower part of a gas inlet pipe of a vacuum cavity; the gas-homogenizing structure comprises a gas-homogenizing cylinder; the gas-homogenizing cylinder adopts a double-layer cylindric structure of an inner gas-homogenizing cylinder and an outer gas-homogenizing cylinder which have coaxial centers and rotate mutually; the bottom of the gas-homogenizing cylinder is closed; gas-homogenizing holes are disposed on the inner gas-homogenizing cylinder and the outer gas-homogenizing cylinder. Under a plasma striking condition, the gas-homogenizing cylinder and a gas-homogenizing disc of the invention are in a sealed state; the increase of the gas density facilitates gas ionization and gas striking, can increase the striking speed; after striking, by rotating the upper and lower layers of the inner and the outer gas-homogenizing cylinders of the gas-homogenizing cylinder and the gas-homogenizing disc, the gas-homogenizing holes are exposed; plasma passes through the gas-homogenizing holes with gas flow and etches a chip; and the uniformity of the gas on the chip surface is improved.
Owner:INST OF MICROELECTRONICS CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products