Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1383 results about "Extreme ultraviolet" patented technology

Extreme ultraviolet radiation (EUV or XUV) or high-energy ultraviolet radiation is electromagnetic radiation in the part of the electromagnetic spectrum spanning wavelengths from 124 nm down to 10 nm, and therefore (by the Planck–Einstein equation) having photons with energies from 10 eV up to 124 eV (corresponding to 124 nm to 10 nm respectively). EUV is naturally generated by the solar corona and artificially by plasma and synchrotron light sources. Since UVC extends to 100 nm, there is some overlap in the terms.

Method and apparatus for generating high output power gas discharge based source of extreme ultraviolet radiation and/or soft x-rays

An EUV photon source includes a plasma chamber filled with a gas mixture, multiple electrodes within the plasma chamber defining a plasma region and a central axis, a power supply circuit connected to the electrodes for delivering a main pulse to the electrodes for energizing the plasma around the central axis to produce an EUV beam output along the central axis, and a preionizer for ionizing the gas mixture in preparing to form a dense plasma around the central axis upon application of the main pulse from the power supply circuit to the electrodes. The EUV source preferably includes an ionizing unit and precipitator for collecting contaminant particulates from the output beam path. A set of baffles may be disposed along the beam path outside of the pinch region to diffuse gaseous and contaminant particulate flow emanating from the pinch region and to absorb or reflect acoustic waves emanating from the pinch region away from the pinch region. A clipping aperture, preferably formed of ceramic and / or Al2O3, for at least partially defining an acceptance angle of the EUV beam. The power supply circuit may generates the main pulse and a relatively low energy prepulse for homogenizing the preionized plasma prior to the main pulse. A multi-layer EUV mirror is preferably disposed opposite a beam output side of the pinch region for reflecting radiation along the central axis for output along the beam path of the EUV beam. The EUV mirror preferably has a curved contour for substantially collimating or focusing the reflected radiation. In particular, the EUV mirror may preferably have a hyperbolic contour.
Owner:USHIO DENKI KK

EUV light source

An apparatus and method for EUV light production is disclosed which may comprise a laser produced plasma (“LPP”) extreme ultraviolet (“EUV”) light source control system comprising a target delivery system adapted to deliver moving plasma initiation targets and an EUV light collection optic having a focus defining a desired plasma initiation site, comprising: a target tracking and feedback system comprising: at least one imaging device providing as an output an image of a target stream track, wherein the target stream track results from the imaging speed of the camera being too slow to image individual plasma formation targets forming the target stream imaged as the target stream track; a stream track error detector detecting an error in the position of the target stream track in at least one axis generally perpendicular to the target stream track from a desired stream track intersecting the desired plasma initiation site. At least one target crossing detector may be aimed at the target track and detecting the passage of a plasma formation target through a selected point in the target track. A drive laser triggering mechanism utilizing an output of the target crossing detector to determine the timing of a drive laser trigger in order for a drive laser output pulse to intersect the plasma initiation target at a selected plasma initiation site along the target track at generally its closest approach to the desired plasma initiation site. A plasma initiation detector may be aimed at the target track and detecting the location along the target track of a plasma initiation site for a respective target. An intermediate focus illuminator may illuminate an aperture formed at the intermediate focus to image the aperture in the at least one imaging device. The at least one imaging device may be at least two imaging devices each providing an error signal related to the separation of the target track from the vertical centerline axis of the image of the intermediate focus based upon an analysis of the image in the respective one of the at least two imaging devices. A target delivery feedback and control system may comprise a target delivery unit; a target delivery displacement control mechanism displacing the target delivery mechanism at least in an axis corresponding to a first displacement error signal derived from the analysis of the image in the first imaging device and at least in an axis corresponding to a second displacement error signal derived from the analysis of the image in the second imaging device.
Owner:ASML NETHERLANDS BV

LPP EUV light source

An apparatus and method is described for effectively and efficiently providing plasma irradiation laser light pulses in an LPP EUV light source which may comprise a laser initial target irradiation pulse generating mechanism irradiating a plasma initiation target with an initial target irradiation pulse to form an EUV generating plasma having an emission region emitting in-band EUV light; a laser plasma irradiation pulse generating mechanism irradiating the plasma with a plasma irradiation pulse after the initial target irradiation pulse so as to compress emission material in the plasma toward the emission region of the plasma. The plasma irradiation pulse may comprise a laser pulse having a wavelength that is sufficiently longer than a wavelength of the initial target irradiation pulse to have an associated lower critical density resulting in absorption occurring within the plasma in a region of the plasma defined by the wavelength of the plasma irradiation pulse sufficiently separated from an initial target irradiation site to achieve compression of the emission material, and the may compress the emission region. The laser plasma irradiation pulse may produce an aerial mass density in the ablating cloud of the plasma sufficient to confine the favorably emitting plasma for increased conversion efficiency. The deposition region for the plasma irradiation pulse may be is removed enough from the initial target surface so as to insure compression of the favorably emitting plasma. A high conversion efficiency laser produced plasma extreme ultraviolet (“EUV”) light source may comprise a laser initial target irradiation pulse generating mechanism irradiating a plasma initiation target with a target irradiation pulse to form an EUV generating plasma emitting in-band EUV light; a plasma tamper substantially surrounding the plasma to constrain the expansion of the plasma.
Owner:ASML NETHERLANDS BV

Arrangement for generating extreme ultraviolet (EUV) radiation based on a gas discharge

The invention is directed to a method and an arrangement for generating extreme ultraviolet (EUV) radiation, i.e., radiation of high-energy photons in the wavelength range from 11 to 14 nm, based on a gas discharge. The object of the invention, to find a novel possibility for generating EUV radiation in which an extended life of the system is achieved with stable generation of a dense, hot plasma column, is met according to the invention in that a preionization discharge is ignited between two parallel disk-shaped flat electrodes prior to the main discharge by a surface discharge along the superficies surface of a cylindrical insulator with a plasma column generated through the gas discharge with pulsed direct voltage, which preionization discharge carries out an ionization of the working gas in the discharge chamber by means of fast charged particles. The preionization discharge is triggered within a first electrode housing and the main discharge takes place between a narrowed output of the first electrode housing and a part of the second electrode housing close to the outlet opening of the discharge chamber. The plasma develops in a part of the second electrode housing covered by a tubular insulator and, as a result of the current-induced magnetic field, contracts to form a dense, hot plasma column, one end of which is located in the vicinity of the outlet opening of the second electrode housing.
Owner:USHIO DENKI KK

Extreme ultraviolet soft x-ray projection lithographic method and mask devices

The present invention relates to reflective masks and their use for reflecting extreme ultraviolet soft x-ray photons to enable the use of extreme ultraviolet soft x-ray radiation projection lithographic methods and systems for producing integrated circuits and forming patterns with extremely small feature dimensions. The projection lithographic method includes providing an illumination sub-system for producing and directing an extreme ultraviolet soft x-ray radiation lambd from an extreme ultraviolet soft x-ray source; providing a mask sub-system illuminated by the extreme ultraviolet soft x-ray radiation lambd produced by the illumination sub-system and providing the mask sub-system includes providing a patterned reflective mask for forming a projected mask pattern when illuminated by radiation lambd. Providing the patterned reflective mask includes providing a Ti doped high purity SiO2 glass wafer with a patterned absorbing overlay overlaying the reflective multilayer coated Ti doped high purity SiO2 glass defect free wafer surface that has an Ra roughness<=0.15 nm. The method includes providing a projection sub-system and a print media subject wafer which has a radiation sensitive wafer surface wherein the projection sub-system projects the projected mask pattern from the patterned reflective mask onto the radiation sensitive wafer surface.
Owner:CORNING INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products