Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

981 results about "Program instruction" patented technology

Detecting computer viruses or malicious software by patching instructions into an emulator

One embodiment of the present invention provides a system for emulating computer viruses and/or malicious software that operates by patching additional program instructions into an emulator in order to aid in detecting a computer virus and/or malicious software within suspect code. During operation, the system loads a first emulator extension into the emulator. This first emulator extension includes program instructions that aid in the process of emulating the suspect code in order to detect a computer virus and/or malicious software. The system also loads the suspect code into an emulator buffer. Next, the system performs an emulation using the first emulator extension and the suspect code. This emulation is performed within an insulated environment in a computer system so that the computer system is insulated from malicious actions of the suspect code. During this emulation, the system determines whether the suspect code is likely to exhibit malicious behavior. In one embodiment of the present invention, loading the first emulator extension into the emulator involves loading the first emulator extension into the emulator buffer within the emulator. In this embodiment, performing the emulation involves emulating the program instructions that comprise the first emulator extension.
Owner:MCAFEE LLC

System, method and program to automatically adjust allocation of computer resources

System and computer program product for automatically adjusting allocation of processing power in a server. The server includes means for monitoring utilization of the processing power in the server and reporting the utilization of the processing power to the system, or means for monitoring availability of the processing power in the server and reporting the availability of the processing power to the system. The system comprises means or program instructions, responsive to a report that the processor utilization is above a first predetermined upper threshold or the processor availability is below a first predetermined lower threshold, for determining if the server can accommodate allocation of additional processing power, and if so, generating a request to allocate additional processing power to the server. The system also comprises other means or program instructions, responsive to a report that the processor utilization is below a second predetermined lower threshold or the processor availability is above a second predetermined upper threshold, for determining if the server can accommodate a de allocation of processing power, and if so, generating a request to de allocate some of the currently allocated processing power from the server. The system and program product also automatically adjust allocation of memory in the server.
Owner:IBM CORP

Graphical user interface for developing test cases using a test object library

A method, apparatus, article of manufacture, for generating a test code for an automatic procedure is disclosed. The method comprises the steps of presenting a visual representation of a library of executable code objects comprising a plurality of test objects to a user, accepting a selection of a first test object in the visual representation, presenting first test object options defining at least one test parameter, accepting a selection of a first test option, translating the first test option into at least one tag and at least one tag parameter, and storing the tag and the tag parameter in a source file. The article of manufacture comprises a data storage device tangibly embodying instructions to perform the method steps described above. The apparatus comprises computer with suitable program instructions for presenting a visual representation of a library of executable code objects to a user. The library of executable code objects includes a plurality of test object members, each of which define a set of instructions for performing a portion of the test procedure. The computer is also configured to implement a graphical user interface, to accepting a selection of a first test object in the visual representation, to present test options for the selected test object, and to accept a test object option.
Owner:IBM CORP

Fast just-in-time (JIT) scheduler

A just-in-time (JIT) compiler typically generates code from bytecodes that have a sequence of assembly instructions forming a "template". It has been discovered that a just-in-time (JIT) compiler generates a small number, approximately 2.3, assembly instructions per bytecode. It has also been discovered that, within a template, the assembly instructions are almost always dependent on the next assembly instruction. The absence of a dependence between instructions of different templates is exploited to increase the size of issue groups using scheduling. A fast method for scheduling program instructions is useful in just-in-time (JIT) compilers. Scheduling of instructions is generally useful for just-in-time (JIT) compilers that are targeted to in-order superscalar processors because the code generated by the JIT compilers is often sequential in nature. The disclosed fast scheduling method has a complexity, and therefore an execution time, that is proportional to the number of instructions in an instruction block (N complexity), a substantial improvement in comparison to the N2 complexity of conventional compiler schedulers. The described fast scheduler advantageously reorders instructions with a single pass, or few passes, through a basic instruction block while a conventional compiler scheduler such as the DAG scheduler must iterate over an instruction basic block many times. A fast scheduler operates using an analysis of a sliding window of three instructions, applying two rules within the three instruction window to determine when to reorder instructions. The analysis includes acquiring the opcodes and operands of each instruction in the three instruction window, and determining register usage and definition of the operands of each instruction with respect to the other instructions within the window. The rules are applied to determine ordering of the instructions within the window.
Owner:ORACLE INT CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products