Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3211results about How to "High simulation" patented technology

Simulation gridding method and apparatus including a structured areal gridder adapted for use by a reservoir simulator

A Flogrid Simulation Gridding Program includes a Flogrid structured gridder. The structured gridder includes a structured areal gridder and a block gridder. The structured areal gridder will build an areal grid on an uppermost horizon of an earth formation by performing the following steps: (1) building a boundary enclosing one or more fault intersection lines on the horizon, and building a triangulation that absorbs the boundary and the faults; (2) building a vector field on the triangulation; (3) building a web of control lines and additional lines inside the boundary which have a direction that corresponds to the direction of the vector field on the triangulation, thereby producing an areal grid; and (4) post-processing the areal grid so that the control lines and additional lines are equi-spaced or smoothly distributed. The block gridder of the structured gridder will drop coordinate lines down from the nodes of the areal grid to complete the construction of a three dimensional structured grid. A reservoir simulator will receive the structured grid and generate a set of simulation results which are displayed on a 3D Viewer for observation by a workstation operator.
Owner:SCHLUMBERGER TECH CORP

Detecting computer viruses or malicious software by patching instructions into an emulator

One embodiment of the present invention provides a system for emulating computer viruses and/or malicious software that operates by patching additional program instructions into an emulator in order to aid in detecting a computer virus and/or malicious software within suspect code. During operation, the system loads a first emulator extension into the emulator. This first emulator extension includes program instructions that aid in the process of emulating the suspect code in order to detect a computer virus and/or malicious software. The system also loads the suspect code into an emulator buffer. Next, the system performs an emulation using the first emulator extension and the suspect code. This emulation is performed within an insulated environment in a computer system so that the computer system is insulated from malicious actions of the suspect code. During this emulation, the system determines whether the suspect code is likely to exhibit malicious behavior. In one embodiment of the present invention, loading the first emulator extension into the emulator involves loading the first emulator extension into the emulator buffer within the emulator. In this embodiment, performing the emulation involves emulating the program instructions that comprise the first emulator extension.
Owner:MCAFEE LLC

Integration of graphic display elements, process modules and control modules in process plants

Graphic displays, which display information about process elements and the manner in which these elements are connected within a process, process modules, which simulate the operation of the elements depicted within the graphic displays and control modules, which perform on-line control activities within a process, may be communicatively connected together to provide a combined control, simulation and display environment that enables enhanced control, simulation and display activities. Smart process objects, which have both graphical and simulation elements, may used to create one or more graphic displays and one or more process simulation modules, each having elements which may communicate with one another to share data between the graphic displays and the process modules. Additionally, function blocks within control modules executed in the process plant may reference the elements within the graphic displays and the process modules (and vice versa) so that control modules may use simulated data developed by the process modules to perform better control, so that process modules may perform better simulation using actual pant data from the control modules, and so that the graphic displays may be used to illustrate actual process data and/or simulated process data as developed by the control modules and the process modules.
Owner:FISHER-ROSEMOUNT SYST INC

Interface device and method for interfacing instruments to vascular access simulation systems

An interface device and method for interfacing instruments to a vascular access simulation system serve to interface peripherals in the form of mock or actual medical instruments to the simulation system to enable simulation of medical procedures. The interface device includes a catheter unit assembly for receiving a catheter needle assembly, and a skin traction mechanism to simulate placing skin in traction or manipulating other anatomical sites for performing a medical procedure. The catheter needle assembly and skin traction mechanism are manipulated by a user during a medical procedure. The catheter unit assembly includes a base, a housing, a bearing assembly and a shaft that receives the catheter needle assembly. The bearing assembly enables translation of the catheter needle assembly, and includes bearings that enable the shaft to translate in accordance with manipulation of the catheter needle assembly. The shaft typically includes an encoder to measure translational motion of a needle of the catheter needle assembly, while the interface device further includes encoders to measure manipulation of the catheter needle assembly in various degrees of freedom (e.g., translation, pitch and yaw) and the skin traction mechanism. Alternatively, the shaft may include an additional encoder to measure translational motion of an instrument inserted through the catheter needle assembly. The simulation system receives measurements from the interface device encoders and updates the simulation and display, while providing control signals to the force feedback device to enable application of force feedback to the catheter needle assembly.
Owner:IMMERSION MEDICAL

High-simulation light-emitting diode (LED) candle lamp

The invention discloses a light-emitting diode (LED) candle lamp and the swinging principle of a light-emitting sheet of the LED candle lamp. The LED candle lamp comprises a casing, a casing core arranged in the casing, a light-emitting assembly and a battery box arranged at the bottom of the casing. The light-emitting assembly comprises the light-emitting sheet, a lens and a support, wherein the support is fixed on the casing core, an LED chip is arranged on the lens, and a magnet is connected at the bottom of the light-emitting sheet. A power supply driving plate is arranged on a top cover of the battery box and is matched with the magnet of the light-emitting sheet through an electromagnet to form a flame swinging mechanism. The swinging principle in that: an electromagnetic coil is driven and led to generate a magnetic field with corresponding change, polarity of the direction of the magnetic field is identical to that of the direction of the magnet at the bottom of the light-emitting sheet, repulsive force changing along with square waves is generated, and the light-emitting sheet is led to swing randomly under effects of electromagnetic force and self gravity. The LED candle lamp is small in electricity consumption and generated heat, is completely free of potential safety hazard, cannot cause energy waste, achieves effect of environment protection, and is suitable for being widely used by people.
Owner:GUANGDONG TONGFANG LIGHTING
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products