Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1367 results about "Zirconia ceramic" patented technology

Zirconia ceramics are ceramic materials made from zirconium oxide (ZrO2) with high chemical inertness and very high thermal expansion as well as a very high resistance to wear and to crack propagation. It has the highest toughness and strength at room temperature of all the advanced ceramic materials.

Method for preparing zirconium oxide ceramic by 3D (Three Dimensional) printing based on photo-curing molding

The invention belongs to the technical field of 3D (Three Dimensional) printing and particularly relates to a method for preparing zirconium oxide ceramic by 3D printing based on photo-curing molding. The invention provides a composition which is prepared from the following raw materials: ceramic powder, a pre-mixed solution, a photoinitiator and a dispersant. The invention further provides a preparation method for preparing the zirconium oxide ceramic by utilizing the composition; and the preparation method comprises the following steps: preparing slurry, molding, curing, drying, degreasing and sintering. According to the technical scheme provided by the invention, the molding efficiency is high, and ceramic particles are uniformly dispersed; a prepared blank body is not cracked or deformed, is dense and uniform and has good surface gloss finish, high precision and excellent blank body performances; and meanwhile, the method also has the advantage of high preparation efficiency. According to the technical scheme provided by the invention, the technical defects of a zirconium oxide ceramic molding method in the prior art that the dependence on a mold is too great and a complicated and precise structure cannot be prepared are overcome.
Owner:GUANGDONG UNIV OF TECH

Graphene and oxide ceramic composite material and preparation method

The invention relates to a graphene and oxide ceramic composite material and a preparation method. Graphite oxide is used as a graphene precursor, the graphite oxide is mixed with zirconium oxide ceramic powder according to a certain proportion, and the mixture is molded and sintered so as to form the graphene and oxide ceramic composite material. The graphene and oxide ceramic composite material has a nanometer composite structure with network connections, nanometer layered graphene is uniformly distributed on a ceramic matrix to form the nanometer composite structure, the nanometer composite structure is conductive to strengthening of strength of the ceramic and endows the ceramic with the functional characteristics of semiconductor, electric conduction, heat conduction, electrochemistry, and the like, and the composite material can be used for developing sensors, electromagnetic shielding, electric heating devices, heat conduction materials, energy-storage electrodes, and the like and is used for the fields of aerospace, electronics, chemical engineering and energy sources. The graphene and oxide ceramic composite material is formed by one step in the sintering process, does not need the processes of functionalizing, mixing and the like, is simple in preparation process and is suitable for large-scale production.
Owner:TIANJIN UNIV

Method for preparing black zirconia ceramics at low temperature

The invention relates to a method for preparing black zirconia ceramics at the low temperature and belongs to the technical field of the preparation of high-temperature structural material. The method respectively uses a homogeneous precipitation method for synthesizing a nanometer coloring agent, and a coprecipitation method for synthesizing nanometer zirconia powder, and adopts Fe-Co-Ni-Mn as a coloring agent. The zirconia powder is not added with any sintering additive, only added with small amount of coloring agent and sintered at the temperature of 1150-1350 DEG C, thus obtaining the black zirconia ceramics with excellent performance and bright color. As the homogeneous precipitation method is adopted for synthesizing coloring agent powder, the monodisperse nanometer particles with uniform powder granules, narrow size distribution and high purity are obtained so that the coloring agent easily colors the particles. As the coprecipitation method is used for synthesizing zirconia powder, nanometer particles with small granularity, big superficial area and high activity are obtained, and can reduce the temperature of the solid-phase reaction, greatly reduce the sintering temperature and solve the problem that the black coloring agent oxide decomposes and volatiles at the high temperature. Simultaneously the method adopts the Fe-Co-Ni-Mn as the coloring agent, thus avoiding the poisonous function of Cr on the human body.
Owner:TSINGHUA UNIV

Thermal barrier coatings with high fracture toughness underlayer for improved impact resistance

A reduced thermal conductivity thermal barrier coating having improved impact resistance for an underlying substrate of articles that operate at, or are exposed to, high temperatures. This coating comprises an inner high fracture toughness layer nearest to the underlying substrate and having a thickness up to about 5 mils (127 microns) sufficient to impart impact resistance to the thermal barrier coating, and comprises a zirconia-containing ceramic composition having a c/a ratio of the zirconia lattice in the range of from about 1.011 to about 1.016 and stabilized in the tetragonal phase by a stabilizing amount of a stabilizing metal oxide selected from the group consisting of yttria, calcia, ceria, scandia, magnesia, india, lanthana, gadolinia, neodymia, samaria, dysprosia, erbia, ytterbia, europia, praseodymia, and mixtures thereof. The thermal barrier coating further includes an outer thermal insulating layer adjacent to and overlaying the inner layer and comprising a ceramic thermal barrier coating material. The thermal barrier can be used to provide a thermally protected article having a substrate (e.g., metal substrate) and optionally a bond coat layer adjacent to and overlaying the substrate. The thermal barrier coating can be prepared by forming the inner high fracture toughness layer, followed by forming on the inner layer the outer thermal insulating layer.
Owner:GENERAL ELECTRIC CO

Preparation method of tooth color imitating dental tetragonal polycrystalline zirconia ceramics

The invention relates to a preparation method of tooth color imitating dental tetragonal polycrystalline zirconia ceramics, which specifically comprises the following steps: taking a 3Y-TZP ceramic ingot as the raw material, taking rare earth oxide and transition element oxide as the colorant, adding the colorant and absolute ethyl alcohol into 3Y-TZP, ball milling, adding the 3Y-TZP, the absolute ethyl alcohol and agate ball milling beads into an agate ball milling pot by the mass ratio of 1:1:1, then drying, dry pressing and forming, isopressing and forming; and sintering at normal pressure, cutting and forming to obtain the tooth color imitating dental tetragonal polycrystalline zirconia ceramics. The preparation method of tooth color imitating dental tetragonal polycrystalline zirconia ceramics has the advantages that the chromatic values of 6 types of zirconia ceramics are within the range of natural tooth color, the color stability is good, the mechanical properties are excellent, and a constructed two-stage sintering process is beneficial to industrialized popularization, expands the adaptation disease scope thereof in dental clinical medicine and provides bases for the localization thereof.
Owner:SHANGHAI NINTH PEOPLES HOSPITAL AFFILIATED TO SHANGHAI JIAO TONG UNIV SCHOOL OF MEDICINE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products