Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

79results about How to "Excellent abrasion" patented technology

Polymer binders for flexible and transparent conductive coatings containing carbon nanotubes

InactiveUS20050209392A1Decrease in optical transparencyDecrease in surface conductivityMaterial nanotechnologySpecial tyresThermoplasticCarbon nanotube
This invention relates to flexible, transparent and conductive coatings and films formed using single wall carbon nanotubes and polymer binders. Preferably, coatings and films are formed from carbon nanotubes (CNT) applied to transparent substrates forming one or multiple conductive layers at nanometer level of thickness. Polymer binders are applied to the CNT network coating having an open structure to provide protection through infiltration. This provides for the enhancement of properties such as moisture resistance, thermal resistance, abrasion resistance and interfacial adhesion. Polymers may be thermoplastics or thermosets, or any combination of both. Polymers may also be insulative or inherently electrical conductive, or any combination of both. Polymers may comprise single or multiple layers as a basecoat underneath a CNT coating, or a topcoat above a CNT coating, or combination of the basecoat and the topcoat forming a sandwich structure. Binder coating thickness can be adjusted by changing binder concentration, coating speed and / or other process conditions. Resulting films and articles can be used as transparent conductors for flat panel display, touch screen and other electronic devices.
Owner:EIKOS

Sintered Material, Ferrous Sintered Sliding Material, Producing Method of the Same, Sliding Member, Producing Method of the Same and Coupling Device

The iron-based sintered sliding material comprises: a sintered structure which contains 10-50 wt. % copper and 1-15 wt. % carbon and has been formed by sintering a powder mixture obtained by mixing at least one of an Fe—Cu alloy powder containing copper in an amount which is the solid solubility or larger and is 5-50 wt. %, excluding 50 wt. %, and an Fe—Cu—C alloy powder containing copper in an amount which is the solid solubility or larger and is 5-50 wt. %, excluding 50 wt. %, and containing carbon in an amount of 0-5 wt. %, excluding 0 wt. %, with a graphite powder and at least one of a copper powder and a copper alloy powder; and graphite particles dispersed in the sintered sliding material in an amount of 1-14 wt. % or 3-50 vol. %.
Owner:KOMATSU LTD

High-cleaning silica materials made via product morphology control and dentifrice containing such

InactiveUS20060110307A1Excellent thickening propertyDesirable abrasivePigmenting treatmentCosmetic preparationsClean teethViscosity
Unique abrasive and / or thickening materials that are in situ generated compositions of precipitated silicas and silica gels are provided. Such compositions exhibit different beneficial characteristics depending on the structure of the composite in situ generated material. With low structured composites (as measured via linseed oil absorption levels from 40 to 100 ml oil absorbed / 100 g composite), simultaneously high pellicle film cleaning properties and moderate dentin abrasion levels are possible in order to accord the user a dentifrice that effectively cleans tooth surfaces without detrimentally abrading such surfaces. Increased amounts of high structure composite materials tend to accord greater viscosity build and thickening benefits together with such desirable abrasion and cleaning properties, albeit to a lesser extent than for the low structure types. Thus, mid-range cleaning materials will exhibit oil absorption levels from an excess of 100 to 150, and high thickening / low abrasion composite exhibit oil absorption properties in excess of 150. Such an in situ, simultaneously produced precipitated silica / silica gel combination provides such unexpectedly effective low abrasion and high cleaning capability and different thickening characteristics as compared to physical mixtures of such components. Encompassed within this invention is a unique method for making such gel / precipitated silica composite materials for such a purpose, as well as the different materials within the structure ranges described above and dentifrices comprising such.
Owner:J M HUBER CORP

Sintered sliding material, sliding member, connection device and device provided with sliding member

A sintered sliding material, a sliding member and a connecting device capable of demonstrating excellent seizing resistance and abrasion resistance under very bad lubricating conditions such as a high-bearing stress and slow-speed sliding condition and an oscillating condition can be provided. The sintered sliding material is composed of a sintered compact containing Cu or Cu alloy in an amount of 10 to 95 wt % and a residue made of Mo principally, in which the sintered compact has a relative density of 80% or more.
Owner:KOMATSU LTD

High-cleaning/low abrasive silica and materials and dentifrice containing such materials

Unique abrasive and / or thickening materials that are in situ generated compositions of precipitated silicas and silica gels are provided. Such compositions exhibit different beneficial characteristics depending on the structure of the composite in situ generated material. With low structured composites (as measured via linseed oil absorption levels from 40 to 100 ml oil absorbed / 100 g composite), simultaneously high pellicle film cleaning properties and moderate dentin abrasion levels are possible in order to accord the user a dentifrice that effectively cleans tooth surfaces without detrimentally abrading such surfaces. Increased amounts of high structure composite materials tend to accord greater viscosity build and thickening benefits together with such desirable abrasion and cleaning properties, albeit to a lesser extent than for the low structure types. Thus, mid-range cleaning materials will exhibit oil absorption levels from an excess of 100 to 150, and high thickening / low abrasion composite exhibit oil absorption properties in excess of 150. Such an in situ, simultaneously produced precipitated silica / silica gel combination provides such unexpectedly effective low abrasion and high cleaning capability and different thickening characteristics as compared to physical mixtures of such components. Encompassed within this invention is a unique method for making such gel / precipitated silica composite materials for such a purpose, as well as the different materials within the structure ranges described above and dentifrices comprising such.
Owner:J M HUBER CORP

Sintered material, ferrous sintered sliding material, producing method of the same, sliding member, producing method of the same and coupling device

An iron-based sintered sliding material includes: a sintered structure which contains 10-50 wt. % copper and 1-15 wt. % carbon and has been formed by sintering a powder mixture obtained by mixing at least one of an Fe—Cu alloy powder containing copper in an amount which is the solid solubility or larger and is 5-50 wt. %, excluding 50 wt. %, and an Fe—Cu—C alloy powder containing copper in an amount which is the solid solubility or larger and is 5-50 wt. %, excluding 50 wt. %, and containing carbon in an amount of 0-5 wt. %, excluding 0 wt. %, with a graphite powder and at least one of a copper powder and a copper alloy powder; and graphite particles dispersed in the sintered sliding material in an amount of 1-14 wt. % or 3-50 vol. %.
Owner:KOMATSU LTD

High-cleaning/low abrasive silica and materials and dentifrice containing such materials

Unique abrasive and / or thickening materials that are in situ generated compositions of precipitated silicas and silica gels are provided. Such compositions exhibit different beneficial characteristics depending on the structure of the composite in situ generated material. With low structured composites (as measured via linseed oil absorption levels from 40 to 100 ml oil absorbed / 100 g composite), simultaneously high pellicle film cleaning properties and moderate dentin abrasion levels are possible in order to accord the user a dentifrice that effectively cleans tooth surfaces without detrimentally abrading such surfaces. Increased amounts of high structure composite materials tend to accord greater viscosity build and thickening benefits together with such desirable abrasion and cleaning properties, albeit to a lesser extent than for the low structure types. Thus, mid-range cleaning materials will exhibit oil absorption levels from an excess of 100 to 150, and high thickening / low abrasion composite exhibit oil absorption properties in excess of 150. Such an in situ, simultaneously produced precipitated silica / silica gel combination provides such unexpectedly effective low abrasion and high cleaning capability and different thickening characteristics as compared to physical mixtures of such components. Encompassed within this invention is a unique method for making such gel / precipitated silica composite materials for such a purpose, as well as the different materials within the structure ranges described above and dentifrices comprising such.
Owner:J M HUBER CORP

High-cleaning/moderate abrasive silica materials and dentifrice containing such materials

Unique abrasive and / or thickening materials that are in situ generated compositions of precipitated silicas and silica gels are provided. Such compositions exhibit different beneficial characteristics depending on the structure of the composite in situ generated material. With low structured composites (as measured via linseed oil absorption levels from 40 to 100 ml oil absorbed / 100 g composite), simultaneously high pellicle film cleaning properties and moderate dentin abrasion levels are possible in order to accord the user a dentifrice that effectively cleans tooth surfaces without detrimentally abrading such surfaces. Increased amounts of high structure composite materials tend to accord greater viscosity build and thickening benefits together with such desirable abrasion and cleaning properties, albeit to a lesser extent than for the low structure types. Thus, mid-range cleaning materials will exhibit oil absorption levels from an excess of 100 to 150, and high thickening / low abrasion composite exhibit oil absorption properties in excess of 150. Such an in situ, simultaneously produced precipitated silica / silica gel combination provides such unexpectedly effective low abrasion and high cleaning capability and different thickening characteristics as compared to physical mixtures of such components. Encompassed within this invention is a unique method for making such gel / precipitated silica composite materials for such a purpose, as well as the different materials within the structure ranges described above and dentifrices comprising such.
Owner:J M HUBER CORP

Insulated wire

ActiveUS20110226508A1Excellent solvent resistance and abrasion resistanceHigh voltagePlastic/resin/waxes insulatorsInsulated cablesResilient modulusMelt viscosity
An inverter surge-resistant insulated wire, having an enamel baked layer, an adhesive layer, and an extrusion-coated resin layer, around the outer periphery of a conductor, wherein the sum of the thickness of the enamel baked layer, the extrusion-coated resin layer, and the adhesive layer is 60 μm or more, wherein the thickness of the enamel baked layer is 50μm or less, and wherein the extrusion-coated resin layer is formed from a polyphenylene sulfide resin composition, which contains a polyphenylene sulfide polymer having a melt viscosity at 300° C. of 100 Pa·s or more, 2 to 8 mass % of a thermoplastic elastomer, and an antioxidant, and which has a tensile modulus of elasticity at 25° C. of 2,500 MPa or more, and a tensile modulus of elasticity at 250° C. of 10 MPa or more.
Owner:ESSEX FURUKAWA MAGNET WIRE JAPAN CO LTD +2

High-cleaning silica materials made via product morphology control under high shear conditions

Unique abrasive materials that are in situ generated compositions of precipitated silicas and silica gels are provided. Such compositions exhibit different beneficial, particularly simultaneously high pellicle film cleaning properties and moderate dentin abrasion levels. Such a result thus accords the user a dentifrice that effectively cleans tooth surfaces without detrimentally abrading such surfaces. Furthermore, the produced abrasive materials also exhibit very high and desirable brightness properties that permit easy incorporation and utilization within dentifrices for aesthetic purposes. Encompassed within this invention is a unique method for making such gel / precipitated silica composite materials for such a purpose, particularly under high shear conditions, as well as the different materials within the structure ranges described above and dentifrices comprising such.
Owner:J M HUBER CORP

Alumina/zirconia ceramics and method of producing the same

Alumina / zirconia ceramics containing Al2O3 in an amount of not less than 65 mass % and ZrO2 in an amount of 4 to 34 mass %, and further containing TiO2, MgO and SiO2. The ceramics effectively suppresses the growth of shape isotropic particles of alumina, suppresses the growth of zirconia particles, and has a high strength and a high hardness. Besides, the ceramics containing SrO features a high fracture toughness.
Owner:KYOCERA CORP

Multilayer structure, method for producing same, and article

A base, an intermediate layer and an outermost layer are sequentially laminated. The intermediate layer has a Martens hardness of 120 N / mm2 or more; outermost layer has an- elastic modulus recovery ratio of 70% or more; and surface of outermost layer is provided with microrelief structure that has pitch not more than the wavelength of visible light. A method for producing the multilayer structure, comprises an active energy ray curable resin composition having a polymerizable functional group arranged on a light-transmitting base, and active energy ray irradiation carried out, forming an intermediate layer with rate of reaction of the polymerizable functional group in the surface is 35-85% by moleStep; an active energy ray curable resin composition (Y) arranged between the intermediate layer and a mold for microrelief structure transfer Step; and second active energy ray irradiation is carried out from the base side, to form an outermost layer.
Owner:MITSUBISHI CHEM CORP

Ferrous Sintered Multilayer Roll-Formed Bushing, Producing Method of the Same and Connecting Device

InactiveUS20100227188A1Low coefficient of frictionExcellent seize resistance and abrasion resistanceBearing assemblyMetal-working apparatusLubricationDiffusion layer
An economic ferrous sintered multilayer roll-formed bushing, a producing method of the same and a connecting device are provided, in which a ferrous sintered sliding material layer is tightly sintered-bonded to a back metal steel, the ferrous sintered sliding material layer being intended to have low coefficient of friction, having excellent seizing resistance and abrasion resistance and providing self-lubricating property so as to prolong a lubrication interval or eliminate the necessity of lubricating.The ferrous sintered multilayer roll-formed bushing according to the present invention comprises: a back metal steel; a ferrous sintered sliding material layer sinter-bonded to the back metal steel; a diffusion layer of ferrous alloy particle formed at the vicinity of the bonding boundary between the ferrous sintered sliding material layer and the back metal steel; and a Cu alloy phase formed at the vicinity of the bonding boundary and extending in the direction of the bonding boundary.
Owner:KOMATSU LTD

Viscosity-modifying silica materials that exhibit low cleaning and abrasive levels and dentifrices thereof

Unique abrasive and / or thickening materials that are in situ generated compositions of precipitated silicas and silica gels are provided. Such compositions exhibit different beneficial characteristics depending on the structure of the composite in situ generated material. With low structured composites (as measured via linseed oil absorption levels from 40 to 100 ml oil absorbed / 100 g composite), simultaneously high pellicle film cleaning properties and moderate dentin abrasion levels are possible in order to accord the user a dentifrice that effectively cleans tooth surfaces without detrimentally abrading such surfaces. Increased amounts of high structure composite materials tend to accord greater viscosity build and thickening benefits together with such desirable abrasion and cleaning properties, albeit to a lesser extent than for the low structure types. Thus, mid-range cleaning materials will exhibit oil absorption levels from an excess of 100 to 150, and high thickening / low abrasion composite exhibit oil absorption properties in excess of 150. Such an in situ, simultaneously produced precipitated silica / silica gel combination provides such unexpectedly effective low abrasion and high cleaning capability and different thickening characteristics as compared to physical mixtures of such components. Encompassed within this invention is a unique method for making such gel / precipitated silica composite materials for such a purpose, as well as the different materials within the structure ranges described above and dentifrices comprising such.
Owner:J M HUBER CORP

Vehicle piston ring having multi-layer coating

Disclosed is a piston ring having a multi-layer coating. The piston ring includes a buffer layer, a intermediate layer, a TiAlN / CrN nano multilayer, and a TiAlCN layer. The buffer layer is coated over a base material of a piston ring. The intermediate layer is coated over the buffer layer. The TiAlN / CrN nano multilayer is coated over the intermediate layer. The TiAlCN layer is coated over the TiAlN / CrN nano multilayer as an outermost surface layer.
Owner:HYUNDAI MOTOR CO LTD +1

Coating Liquid for Forming Transparent Coating Film and Base with Transparent Coating Film

A hard coat or a transparent film having excellent adhesion to a polycarbonate substrate is provided. The transparent film-forming coating liquid of the present invention comprises the following components (A) to (D): (A) an organosilicon compound and / or a hydrolyzate of the organosilicon compound, (B) metal oxide fine particles each of which comprises a metal oxide core particle and a coating layer composed of antimony oxide, (C) one or more curing agents (curing agent (A)) selected from the group consisting of a polythiol compound, an organic polycarboxylic acid and an acetylacetone metal complex, and (D) a curing agent (curing agent B) comprising a compound containing basic nitrogen. The metal oxide particles (B) have been surface-modified with an organosilicon compound or an amine compound.
Owner:JGC CATALYSTS & CHEM LTD

Coating composition for antireflection, antireflection film and method for preparing the same

The present invention provides a coating composition for antireflection that includes a low refractive material having a refractive index of 1.2 to 1.45 and a high refractive resin having a refractive index of 1.46 to 2, in which the difference in the surface energy between two materials is 5 mN / m or more; an antireflection film manufactured using the coating composition for antireflection; and a method of manufacturing the antireflection film. According to the present invention, the antireflection film having excellent abrasion resistance and antireflection characteristic can be manufactured using a single composition by one coating process, thereby reducing manufacturing cost.
Owner:LG CHEM LTD

Viscosity-modifying silica materials that exhibit low cleaning and abrasive levels and dentifrices thereof

Unique abrasive and / or thickening materials that are in situ generated compositions of precipitated silicas and silica gels are provided. Such compositions exhibit different beneficial characteristics depending on the structure of the composite in situ generated material. With low structured composites (as measured via linseed oil absorption levels from 40 to 100 ml oil absorbed / 100 g composite), simultaneously high pellicle film cleaning properties and moderate dentin abrasion levels are possible in order to accord the user a dentifrice that effectively cleans tooth surfaces without detrimentally abrading such surfaces. Increased amounts of high structure composite materials tend to accord greater viscosity build and thickening benefits together with such desirable abrasion and cleaning properties, albeit to a lesser extent than for the low structure types. Thus, mid-range cleaning materials will exhibit oil absorption levels from an excess of 100 to 150, and high thickening / low abrasion composite exhibit oil absorption properties in excess of 150. Such an in situ, simultaneously produced precipitated silica / silica gel combination provides such unexpectedly effective low abrasion and high cleaning capability and different thickening characteristics as compared to physical mixtures of such components. Encompassed within this invention is a unique method for making such gel / precipitated silica composite materials for such a purpose, as well as the different materials within the structure ranges described above and dentifrices comprising such.
Owner:J M HUBER CORP

High-cleaning silica materials and dentifrice containing such

Unique abrasive and / or thickening materials that are in situ generated compositions of precipitated silicas and silica gels are provided. Such compositions exhibit different beneficial characteristics depending on the structure of the composite in situ generated material. With low structured composites (as measured via linseed oil absorption levels from 40 to 100 ml oil absorbed / 100 g composite), simultaneously high pellicle film cleaning properties and moderate dentin abrasion levels are possible in order to accord the user a dentifrice that effectively cleans tooth surfaces without detrimentally abrading such surfaces. Increased amounts of high structure composite materials tend to accord greater viscosity build and thickening benefits together with such desirable abrasion and cleaning properties, albeit to a lesser extent than for the low structure types. Thus, mid-range cleaning materials will exhibit oil absorption levels from an excess of 100 to 150, and high thickening / low abrasion composite exhibit oil absorption properties in excess of 150. Such an in situ, simultaneously produced precipitated silica / silica gel combination provides such unexpectedly effective low abrasion and high cleaning capability and different thickening characteristics as compared to physical mixtures of such components. Encompassed within this invention is a unique method for making such gel / precipitated silica composite materials for such a purpose, as well as the different materials within the structure ranges described above and dentifrices comprising such.
Owner:J M HUBER CORP

Rubber composition for tire and pneumatic tire

The present invention provides: a rubber composition for a tire having favorable productivity, excellent heat aging resistance and abrasion resistance, and excellent fuel economy; and a pneumatic tire using the rubber composition. The rubber composition contains neither soluble sulfur nor insoluble sulfur, and contains diene rubber, 1-15 parts by mass of compound 1 represented by formula (1) and 0.1-5 parts by mass of compound 2 represented by formula (2), per 100 parts by mass of the diene rubber, and the amount ratio of compound 1 to compound 2 (compound 1 / compound 2) is 1-8.wherein R1-R4 are the same or different, and represent C1-20 alkyl, C6-20 aryl, or C7-20 aralkyl, and n represents an integer of 1-12;wherein R5-R7 are the same or different, and represent C5-12 alkyl, x and y are the same or different, and represent an integer of 2-4, and m represents an integer of 0-10.
Owner:SUMITOMO RUBBER IND LTD

High-cleaning, low abrasion, high brightness silica materials for dentrifices

Unique abrasive materials that are in situ generated compositions of precipitated silicas and silica gels are provided. Such compositions exhibit different beneficial, particularly simultaneously high pellicle film cleaning properties and moderate dentin abrasion levels. Such a result thus accords the user a dentifrice that effectively cleans tooth surfaces without detrimentally abrading such surfaces. Furthermore, the produced abrasive materials also exhibit very high and desirable brightness properties that permit easy incorporation and utilization within dentifrices for aesthetic purposes. Encompassed within this invention is a unique method for making such gel / precipitated silica composite materials for such a purpose, particularly under high shear conditions, as well as the different materials within the structure ranges described above and dentifrices comprising such.
Owner:J M HUBER CORP

Facer and construction materials made therewith

Electron beam curable resins or ultraviolet light curable resins can be used in combination with filler and other additives to make coated facers that can be used on insulation boards. Also disclosed are facers made of such composition, the process for making said facers and their use in insulation, building and construction boards. More specifically a flexible facer can be made by a process that comprises (1) applying a monomeric composition to a fiber mat, wherein the fiber mat is a non-asphaltic, non-cellulosic fiber mat, and wherein the monomeric composition is comprised of at least one monomer and / or at least one oligomer, and a filler, (2) initiating polymerization of the monomer within the monomeric composition by exposing the monomeric composition to ultraviolet light or an electron beam, and (3) allowing the monomer to polymerized to produce the flexible facer.
Owner:BMIC LLC

Cooking UItensils with Metallic Non-Stick Coating and Methods for Making the Same

Disclosed is a cooking utensil coated with a metallic non-stick coating made of a nickel-aluminum-molybdenum (NiAlMo) alloy mainly composed of nickel aluminum (NiAl), and / or a nickel-chrome-chromic carbide (NiCr—Cr3C2) alloy mainly composed of chromic carbide (Cr3C2). A method for coating a cooking utensil with a metallic non-stick coating is also provided. The metallic non-stick coating of the invention possesses high impact, heat and abrasion resistances.
Owner:QIN RAYMOND +1

Extensible artificial leather and method for making the same

InactiveUS20080145613A1Excellent strength against peeling and abrasion and dissolutionShort processSynthetic resin layered productsPretreated surfacesEngineeringTextile
A method is provided for making extensible artificial leather. In the method, a substrate is supported on in-extensible woven cloth and locating the substrate firmly on a coating machine. Foamy highly solid-containing water-based polyurethane resin is coated on the substrate for forming a middle layer with tiny open cells. The middle layer is dried and the woven cloth is removed from the substrate. A superficial layer of polyurethane is attached to the middle layer in a dry process so that the extensible artificial leather is made with excellent strength against peeling, abrasion and dissolution.
Owner:SAN FANG CHEM IND
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products