1020results about How to "Promote absorption" patented technology

Yb-doped fiber and manufacturing method thereof

The invention discloses an Yb-doped fiber and a manufacturing method thereof. The Yb-doped fiber comprises a core layer at least containing Yb and Al, a glass matrix cladding surrounding the core layer, and a low-refractive index coating layer surrounding the glass matrix cladding. The glass matrix cladding comprises an inner cladding and an outer cladding. The refractive index of the inner cladding is lower than that of the core layer, and higher than that of the outer cladding. The inner cladding uses Ge, P, Al, and F as doping agents. The core layer is doped with F and P as doping agents. A MCVD method is used to manufacture a performing bar, fiber-drawing temperature is controlled, so optical fibers are drawn under relatively low tension, and required fibers are obtained. Through improving the refractive index of the inner cladding, relatively through reducing the difference between the refractive index of the core layer and the refractive index of the inner cladding, relatively high Al and Yb doping concentration in a fiber core is maintained, so as to reduce core layer NA under the condition that relatively high fiber cladding absorption coefficient is maintained, and single-mode output is realized, that is, fiber quality factor is proximity to one. The manufacturing method can manufacture a high-concentration Yb-doped fiber, and realizes relatively high cladding absorption coefficient.

Synthesis and application of nitrogen-doped graphene quantum dot/similar-graphene phase carbon nitride composite material

The invention discloses synthesis of nitrogen-doped graphene quantum dot/similar-graphene phase carbon nitride composite material and research and application of photocatalytic decomposition of aquatic hydrogen performance. A catalyst is composed of a nitrogen-doped graphene quantum dot and similar-graphene phase carbon nitride. Under simulated sunlight, the catalyst can efficiently and stably achieve water photolysis to produce hydrogen. The synthesis and application have the advantages that the catalyst is completely composed of nonmetal elements and has the advantages of being environmentally friendly and low in cost; the light response range of the similar-graphene phase carbon nitride is enlarged due to the doping of the nitrogen-doped graphene quantum dot, and absorption under the visible light is increased; the photosensitization effect and the ultrastrong electron conduction capacity of the nitrogen-doped graphene quantum dot are utilized at the same time, photo-induced electron and hole composition is restrained, and meanwhile the light utilization rate is improved; the raw materials are low in cost and easy to obtain, the synthesis method is simple, the synthesis yield and purity are high, and experimental repeatability is good.

Method of providing customized drug delivery correlating to a patient's metabolic profile

A novel method of correlating the disposition of a specific drug in an individual patient to a controlled and modulated delivery system for optimizing therapeutic response of orally ingested dosage forms is provided. Such a method broadly encompasses a first determination of an individual's metabolic rate in terms of absorption of pharmaceutical materials from within the gastrointestinal tract measured as blood plasma concentration over a specific period of time after ingestion or by other commercially available methods and subsequent determination: 1) predicting a proper pharmaceutical compositions, in terms of amount of active available for absorption by the target patient; and 2) amount of such active pharmaceutical ingredient (API) to be formulated within a drug-delivery device that will take into account the unique metabolic profile of the drug (or drugs) in a specific patient. As a result, the API may be formulated as beads, pellets, minitablets, powders, granules, suspensions, and/or emulsions present within the drug-delivery source. As one potentially preferred embodiment, such beads and/or pellets, which may be coated with different polymers and differing levels of coatings, are selected in response to the initial determination of the patient's metabolic profile in order to ensure the specific targeted patient receives the most efficient dosage of the active drug at a rate unique to that individual.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products