Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

143 results about "Nonlinear fiber" patented technology

Apparatus and method for the generation of high-power femtosecond pulses from a fiber amplifier

An apparatus generates femtosecond pulses from laser amplifiers by nonlinear frequency conversion. The implementation of nonlinear frequency-conversion allows the design of highly nonlinear amplifiers at a signal wavelength (SW), while still preserving a high-quality pulse at an approximately frequency-doubled wavelength (FDW). Nonlinear frequency-conversion also allows for limited wavelength tuning of the FDW. As an example, the output from a nonlinear fiber amplifier is frequency-converted. By controlling the polarization state in the nonlinear fiber amplifier and by operating in the soliton-supporting dispersion regime of the host glass, an efficient nonlinear pulse compression for the SW is obtained. The generated pulse width is optimized by utilizing soliton compression in the presence of the Raman-self-frequency shift in the nonlinear fiber amplifier at the SW. High-power pulses are obtained by employing fiber amplifiers with large core-diameters. The efficiency of the nonlinear fiber amplifier is optimized by using a double clad fiber (i.e., a fiber with a double-step refractive index profile) and by pumping light directly into the inner core of this fiber. Periodically poled LiNbO3 (PPLN) is used for efficient conversion of the SW to a FDW. The quality of the pulses at the FDW can further be improved by nonlinear frequency conversion of the compressed and Raman-shifted signal pulses at the SW. The use of Raman-shifting further increases the tuning range at the FDW. For applications in confocal microscopy, a special linear fiber amplifier is used.
Owner:IMRA AMERICA

Self-adaptive damage compensation method and system for digital-related optical communication system

The invention relates to a self-adaptive damage compensation method and system for a digital-related optical communication system. The self-adaptive damage compensation method includes inserting two pulse modulation pilot frequency signals symmetrically distributed on an input signal frequency fc (fiber channel) at a transmitting terminal; acquiring an input signal power spectrum by the Fourier transform at a receiving terminal, and receiving the pilot frequency signals of a signal power spectrum and subjecting the pilot frequency signals to location and filtering extraction; calculating size of frequency offset of a vibration laser and performing compensation by a pilot frequency; acquiring pilot time domain waveforms by the Fourier transform and calculating a delay delta tau between two pilot light pulses, and calculating size of dispersion by the delta tau and performing the compensation; finally extracting pilot phase noises and subtracting the same from a signal phase so as to eliminate laser phase noises and nonlinear fiber damages. The self-adaptive damage compensation method has the advantages of high accuracy, low complexity, small occupation of bandwidth and fast response speed, so that self-adaptive compensation of various damages can be realized.
Owner:HUAZHONG UNIV OF SCI & TECH

Erbium doped fiber laser with convertible multi-wavelength and mode locking and realization method thereof

InactiveCN101557071AMeet needsSwitchable wavelength tunableActive medium shape and constructionMode-lockingLaser light
The invention relates to an erbium doped fiber laser with multi-wavelength and mode locking functions and convertible working state and a realization method thereof, in particular to a laser which can realize switching conversion between multi-wavelength and mode locking, has adjustable output wavelength position of multi-wavelength, and can stably work at room temperature and a realization method thereof. The laser comprises: a gain amplification unit, a polarization control unit, an output coupling unit, a comb filtering unit, an optical isolation unit and a nonlinear fiber loop mirror. The realization method of the laser includes the following steps: incident polarization state and double refraction are adjusted to lead the nonlinear fiber loop mirror inserted in the cavity of the laser to be in different working states, and the multi-wavelength and mode locking functions of the laser are respectively realized according to the different working conditions of the nonlinear fiber loop mirror. The invention has the advantages of convenient toning, low cost, being capable of realizing the two functions of stable multi-wavelength continuous output and mode locking pulse output, and the like, and can satisfy the demand for multifunctional laser light sources of optical time division multiplex/wavelength division multiplex communication technology.
Owner:HARBIN INST OF TECH SHENZHEN GRADUATE SCHOOL

Optically controlled optical PAM signal regeneration device

The invention discloses an optically controlled optical PAM signal regeneration device comprising a power adapting unit, an optical clock control unit and a PAM reshaping unit, wherein the PAM reshaping unit is the core of a regenerator and is composed of a Mach-Zehnder interferometer MZI and a highly nonlinear fiber ring NOLM, for a to-be-regenerated degraded optical PAM signal, the level matching between the input degraded optical PAM signal and the PAM reshaping unit is accomplished by the power adapting unit, the optical clock signal power and the delay output by the optical clock control unit and a phase shifter in the MZI structure are adjusted, so that the PAM reshaping unit works normally, the loss coefficient, the optical fiber length, the nonlinear coefficient and other parameters of a highly nonlinear optical fiber in the NOLM structure, and the coupling coefficients of front and back couplers in the MZI structure are changed to design PAM reshaping units with different level numbers, and then the regeneration of the degraded optical PAM signal is accomplished. Therefore, the optically controlled optical PAM signal regeneration device disclosed by the invention can execute a reshaping and a re-timing function and has the advantages of flexible design of regeneration level numbers.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

Multifunctional optical signal processing system

InactiveCN102347797AAchieving Dynamic Dispersion CompensationTransparent rateDistortion/dispersion eliminationOptical power meterTransport system
The invention relates to a multifunctional optical signal processing system. In the system, continuous detection light and signal light are combined through a first coupler and injected into a high nonlinear optical fiber; idle light generated in the high nonlinear optical fiber due to a fourwave mixing effect is divided into two paths through an optical filter and an optical coupler and are output, wherein one output path is connected to an optical power meter, the optical power output performs feedback control on a tunable dispersion compensator so as to realize dynamic dispersion compensation, while the other output path is used as a system output signal to generate an optical signal with high extinction ratio and no dispersion; and the wavelength of the output optical signal is changed by regulating the wavelength of the detection light, so that tunable wavelength conversion is realized. The multifunctional optical signal processing system can realize HNLF (High Nonlinear Fiber), dispersion detection, extinction ratio enhancement and wavelength conversion, has the advantages of multifunction integration, high response speed, high sensitivity of dispersion detection, wide working wave band and transparency to signal speed and modulation format and can be applied to an optical transmission system with channel rate of over 40Gb/s.
Owner:HUAZHONG UNIV OF SCI & TECH

Double-pump Fourier domain mode-locked fiber optical parametric oscillator

InactiveCN102749785AAchieve laser outputFlexible tuning range controlNon-linear opticsOptical tomographyGrating
The invention relates to a fiber optical parametric oscillator for achieving Fourier domain mode-locked laser output. Seed light output by two semiconductor lasers is modulated by phase and amplified by a high power optical amplifier to serve as pump light, the pump light is output from the pump output end of a wavelength division multiplexer and enters high nonlinear fiber through a polarization controller, and a part of the pump light is transferred into signal light in the high nonlinear fiber due to fiber nonlinear effect. After the signal light passes through a second optical isolator, dispersion-shifted fiber and a tunable filter, most energy is fed back to the high nonlinear fiber from a high power shunt ratio output end of an optical coupler with 9:1 power shunt ratio through the wavelength division multiplexer so as to form resonance laser output. When modulation frequency of the tunable filter is equal to fundamental frequency of a laser resonant cavity, the Fourier domain mode-locked laser output can be obtained. The fiber optical parametric oscillator achieves the Fourier domain mode-locked laser output, has significant application value in the fields of optical tomography, fiber bragg grating sensing and the like, and has the advantages of being high in wavelength scanning frequency, flexible in laser output spectrum tuning range control and the like.
Owner:ZHEJIANG NORMAL UNIVERSITY

High-power and tunable pulse fiber laser device

The invention belongs to the technical field of laser devices, and provides a high-power and tunable pulse fiber laser device and a super-continuum spectrum light source pumped through the high-power and tunable pulse fiber laser device. The high-power and tunable pulse fiber laser device sequentially comprises a tunable passive mode-locking fiber laser device based on the fiber nonlinear effect, a broadband fiber coupler, a power pre-amplification stage and a power main amplification stage in the light path direction. The output end of the high-power and tunable pulse fiber laser device is connected with photonic crystal fibers or high nonlinear fibers or other super-continuum spectrum generating fibers with zero-dispersion wavelength located in the pumping laser gain area, precise matching of the pumping laser and the zero-dispersion wavelength of the super-continuum spectrum generating fibers can be achieved, and accordingly, a broadband and high flatness super-continuum spectrum light source can be obtained. The device has the advantages that the structure is simple, the tuning of the pumping laser wavelength is convenient, cost is low, and full fiber is achieved, and the device can be applied to the fields such as biomedicine, remote sensing, environment monitoring, multi-channel fiber communication and spectroscopy.
Owner:SHENZHEN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products