Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

701 results about "Confocal microscopy" patented technology

Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser confocal scanning microscopy (LCSM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. Capturing multiple two-dimensional images at different depths in a sample enables the reconstruction of three-dimensional structures (a process known as optical sectioning) within an object. This technique is used extensively in the scientific and industrial communities and typical applications are in life sciences, semiconductor inspection and materials science.

Apparatus and method for the generation of high-power femtosecond pulses from a fiber amplifier

An apparatus generates femtosecond pulses from laser amplifiers by nonlinear frequency conversion. The implementation of nonlinear frequency-conversion allows the design of highly nonlinear amplifiers at a signal wavelength (SW), while still preserving a high-quality pulse at an approximately frequency-doubled wavelength (FDW). Nonlinear frequency-conversion also allows for limited wavelength tuning of the FDW. As an example, the output from a nonlinear fiber amplifier is frequency-converted. By controlling the polarization state in the nonlinear fiber amplifier and by operating in the soliton-supporting dispersion regime of the host glass, an efficient nonlinear pulse compression for the SW is obtained. The generated pulse width is optimized by utilizing soliton compression in the presence of the Raman-self-frequency shift in the nonlinear fiber amplifier at the SW. High-power pulses are obtained by employing fiber amplifiers with large core-diameters. The efficiency of the nonlinear fiber amplifier is optimized by using a double clad fiber (i.e., a fiber with a double-step refractive index profile) and by pumping light directly into the inner core of this fiber. Periodically poled LiNbO3 (PPLN) is used for efficient conversion of the SW to a FDW. The quality of the pulses at the FDW can further be improved by nonlinear frequency conversion of the compressed and Raman-shifted signal pulses at the SW. The use of Raman-shifting further increases the tuning range at the FDW. For applications in confocal microscopy, a special linear fiber amplifier is used.
Owner:IMRA AMERICA

Measuring device and method that operates according to the basic principles of confocal microscopy

A scanning system for confocal scanning of an object, comprising a light source (1), imaging optics (4) for focusing the light (5) radiated from the light source (1) onto the object (6) to be scanned, and further comprising an image detector (10) for detecting the light (7) from an object point (6′) backscattered from the object (6) and passing through the same imaging optics (4). Means (11) for varying the length of the optical path are disposed in the optical path between the aperture array (3) and the object (6), by which means the optical distance of the image plane can be modified in a specific manner, and means are provided to influence the light (5) radiated by the light source onto the object (6) and / or the light (7) reflected from the object (6) and impinging on the sensor (10), in at least one of its characteristics, during an exposure period (tB1) for acquiring an image, and, during said exposure period (tB1), a profile holds which states a specific relationship between the characteristic of the light (5, 7) and the optical distance of the image plane from the imaging optics (4), and means (10) are provided which provide a measured value dependent on the characteristics of the light of the trajectory of observation (7) over the exposure period (tB1), a height coordinate (Zs) of the object (6) being reconstructable from the measured value achieved during said exposure period (tB1) and a reference value.
Owner:SIRONA DENTAL SYSTEMS

High-speed measuring device and method based on a confocal microscopy principle

ActiveUS7582855B2No longer be carried outSimple correlationImpression capsMaterial analysis by optical meansMeasurement deviceCo ordinate
The invention relates to a measuring device and a method based on a confocal microscopy principle. The inventive device comprises a light source (1), a diaphragm unit (3) for limiting a beam, an imagine optical system (4) for focusing the light (5) which is irradiated by said source on a measurable object (6) and passes through said diaphragm unit. Said device also comprises an optical system (10) for receiving the light (5) reflected from the object and passing through said optical system or another diaphragm unit disposed in an observation beam (7) and an image receiver (10) which is provided with at least two radiation-sensitive sensor elements (13, 14) (pixel). Said invention is characterized in that, in order to obtain the image of an altitude information-containing measurement, the device is also provided with means (11) for modifying the beam optical path length disposed between the light source (1) and / or the image receiver (10), on one side, and the object (6) on the other and the optical distance (d) of a focal point is modifiable in a predetermined manner. In addition, said intention makes it possible to influence the dependence of an accumulation of charges (Q13, Q14) in at least two sensor elements (13, 14) on the light intensity of the observation beam (7) during the exposure time in such a way that a correlation associated with the optical distance (d) of an image plane can be carried out by the imagine optical system (4), thereby making it possible to reconstitute the altitude co-ordinate (zs) of the object by distributing the intensity values obtained during the exposure time from at least two sensor elements (13, 14).
Owner:SIRONA DENTAL SYSTEMS

Differential confocal combination ultra-long focal length measuring method and apparatus

ActiveCN101403650AReduce measurementReduced impact of focal length measurement accuracyTesting optical propertiesPupilFocal position
The invention belongs to the optical precise measurement technical field and relates to an ultra-long focal distance measuring method and a corresponding apparatus used for a differential confocal combined lens. The method firstly adopts the differential confocal focusing theory to respectively define the focus position of a reference lens and the focus position of the combination of measured lens and reference lens; then the distance delta between two focuses and the distance d<0> between two lenses are measured and then the formula is adopted to figure out the focal distance of the measured lens and the sensitivity for focal distance measurement can be simultaneously enhanced with the pupil filtering technique during the measuring process. The invention firstly puts forward the adoption of the features of the corresponding micro-lens focus while the differential confocal response curve passes the zero point so as to extend the differential confocal microscopy theory to the ultra-long focal distance measurement field and form the differential confocal focusing theory. The invention integrates the differential confocal focusing theory and the lens combination so as to get the advantages that the measurement precision is high and the anti-interference capability is strong. The invention can be applied to the detection for the lens with ultra-long focal distance and the high-precise focal distance measurement in the optical system assembling process.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Confocal microscope comprising two microlens arrays and a pinhole diaphragm array

A confocal microscope comprises a microlens array having a plurality of microlenses for splitting a ray bundle of illumination light into a plurality of convergent partial ray bundles which illuminate a sample simultaneously at several measuring points; a beam splitter for separating a beam path of the illuminating light and a beam path of sample light originating from the illumination of the sample and captured in an inverse direction with regard to the illumination light; a pinhole diaphragm array having a plurality of pinhole diaphragms arranged in the beam path of the sample light and corresponding to said microlenses of said microlens array splitting the illumination light; and a further microlens array having a plurality of microlenses corresponding to said microlenses of said microlens array splitting the illumination light. Said microlenses of said microlens array splitting the illumination light and said microlenses of said further microlens array are arranged in the beam path of the sample light. Said beam splitter is arranged in an area between said microlens array splitting the illumination light and said further microlens array; and said pinhole diaphragms of said pinhole diaphragm array are not arranged in the area between said microlens array splitting the illumination light and said further microlens array.
Owner:MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN EV

Differential confocal curvature radius measurement method and device

The invention belongs to the technical field of optical precision measurement and relates to a differential confocal lens curvature radius measurement method and a device. The method firstly utilizes the differential confocal focusing principle to respectively determine the positions of a top point and a spherical center of a measured lens and then measures the distance between the two focuses; meanwhile, the curvature radius measurement sensitivity can be improved by the pupil filtering technology during the measurement process. The invention firstly proposes to utilize the characteristic that a differential confocal response curve is corresponding to the top point and the spherical center of the measured lens when passing a zero point to realize the precise focusing, expands the application of differential confocal microscopy principle to the field of curvature radius measurement and forms the differential confocal focusing principle. The invention applies the differential confocal focusing principle and has the advantages of high measurement precision and strong anti-environmental interference ability, thereby being capable of being used in the detection of the lens curvature radius and the high-precision curvature radius measurement during the optical system assembly process.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products