Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1057 results about "Fluorescence microscope" patented technology

A fluorescence microscope is an optical microscope that uses fluorescence and phosphorescence instead of, or in addition to, scattering, reflection, and attenuation or absorption, to study the properties of organic or inorganic substances. "Fluorescence microscope" refers to any microscope that uses fluorescence to generate an image, whether it is a more simple set up like an epifluorescence microscope or a more complicated design such as a confocal microscope, which uses optical sectioning to get better resolution of the fluorescence image.

Element-specific X-ray fluorescence microscope and method of operation

An element-specific imaging technique utilizes the element-specific fluorescence X-rays that are induced by primary ionizing radiation. The fluorescence X-rays from an element of interest are then preferentially imaged onto a detector using an optical train. The preferential imaging of the optical train is achieved using a chromatic lens in a suitably configured imaging system. A zone plate is an example of such a chromatic lens; its focal length is inversely proportional to the X-ray wavelength. Enhancement of preferential imaging of a given element in the test sample can be obtained if the zone plate lens itself is made of a compound containing substantially the same element. For example, when imaging copper using the Cu La spectral line, a copper zone plate lens is used. This enhances the preferential imaging of the zone plate lens because its diffraction efficiency (percent of incident energy diffracted into the focus) changes rapidly near an absorption line and can be made to peak at the X-ray fluorescence line of the element from which it is fabricated. In another embodiment, a spectral filter, such as a multilayer optic or crystal, is used in the optical train to achieve preferential imaging in a fluorescence microscope employing either a chromatic or an achromatic lens.
Owner:CARL ZEISS X RAY MICROSCOPY

Two channel-based multi-spectrum fluorescent imaging microscopic system and method

The invention is applicable to the field of optics, biomedicine, life science and the like, and provides a two channel-based multi-spectrum fluorescent imaging microscopic system and method, wherein the two channel-based multi-spectrum fluorescent imaging microscopic system comprises a picosecond pulse laser device, a fluorescent excitation and collection light path, a microscopic objective lens, a light beam lens, a double-ICCD detector, and a control and processing module. The invention further discloses a method for performing multi-spectrum imaging by utilizing the two channel-based multi-spectrum fluorescent imaging microscopic system. According to the two channel-based multi-spectrum fluorescent imaging microscopic system and method, the limitation of the existing fluorescent microscope and a fluorescent life imaging microscopic system only can acquire single wavelength fluorescent signal with one-time detection can be effectively solved, the simultaneous acquisition of the multi-spectrum fluorescent strength and fluorescent light image aiming at the dynamic process of fluorescent intensity-related detection limited in biomedicine and life science can be performed, so that the research and application ranges of biophotonics can be extended.
Owner:INST OF SEMICONDUCTORS - CHINESE ACAD OF SCI

Variable visual field scanning microscope and the method based on fixed light path system

InactiveCN101339129AFlexible conversionMeet different biomedical application requirementsTelescopesFluorescence/phosphorescenceFluorescence microscopeDiscretization
The invention discloses a variable-field scanning microscopic method based on a fixed optical path system, and a device thereof. At first, a beam expanding system is used for uniformly expanding laser beams which are transmitted from a laser so as to form uniform laser beams; then a two-dimensional space discrete system is used for the two-dimensional space discretization of the uniform laser beams so as to form a sub-beam of M multiplied by N; the sub-beam of M multiplied by N orderly passes through a collimating lens, a scanning galvanometer, a reflector, a dichroic mirror and a fluorescence microscope, and then focuses on the sample on a sample platform; thus the excited fluorescence can be formed on the sample; the fluorescence microscope is used for collecting the excited fluorescence, which is transmitted into an imaging system after being reflected by the dichroic mirror and focused by a focusing lens. The scanning of the galvanometer and the crossing movement of the sample platform are combined: the scanning step length and the scanning step number of the galvanometer are changed; the area of the unit viewing field is used as the step length to move the sample platform; thus the scanned viewing field can be changed. The scanning microscopic method realizes the flexible switching between the low-resolution large viewing field and the high-resolution small viewing field, and satisfies the requirements in different biomedical applications.
Owner:SHENZHEN UNIV

Superresolution in microlithography and fluorescence microscopy

In scanned optical systems such as confocal laser microscopes wherein a beam of light is focused to a spot in a specimen to excite a fluorescent species or other excitable species in the spot, the effective size of the excitation is made smaller than the size of the spot by providing a beam of light of wavelength adapted to quench the excitation of the excitable species, shaping this second beam into a pattern with a central intensity minimum, and overlapping this central minimum with the central intensity maximum of the focused spot, so that within the spot the intensity of quenching light increases with distance from the center of the spot, thereby preferentially quenching excitation in the peripheral parts of the spot, and thereby reducing the effective size of the excitation and thus improving the resolution of the system. In the preferred embodiment of the present invention, the central minimum of quenching light is narrowed further by creating the pattern of quenching radiation in the specimen by imaging onto the focal plane a plurality of pairs of sources of quenching light, arrayed at the vertices of a regular, even-sided polygon, the center of which is imaged in the specimen on the central maximum of exciting radiation, and such that the two members of each pair are on opposite vertices of the polygon and emit light mutually coherent and out-of-phase, and the light emitted by different pairs is incoherent with respect to each other.
Owner:BAER STEPHEN C

Method and apparatus realizing quasi confocal fluorescent microscopic with dynamic speckle illumination

The present invention relates to a novel method and a novel device, incorporating dynamic speckle lighting with a conventional wide field fluorescence microscope organically to implement approximately confocal fluorescence microscopy (i.e., quasi-confocal fluorescence microscopy). The present invention employs an argon ion laser as the light source; the exciting light passes through a scattering object, a relay light path system for expanding and shaping, and then is coupled to the fluorescence microscope and focused to the sample. The stepping and revolution of the scattering object is controlled with a computer to produce a dynamic speckle pattern on the sample. The received fluorescent images are processed to obtain high-resolution spatial chromatographic images under no need to scan condition. The method can be used to obtain high-resolution three-dimensional chromatographic and microscopic image information of biological tissue samples in a non-intrusive manner. The device has simple structure, high cost-performance ratio, and is favorable for post data processing, easy to operate and apply; therefore, the device and method have a wide market application prospect and great significance for clinical diagnosis and life science research.
Owner:SHENZHEN UNIV

Integrated micro-fluidic chip and system for capture, culture and administration of single cells

Aiming at the lack of an integrated micro-fluidic chip capable of realizing capture, culture and batch differential administration of single cells simultaneously in the prior, the invention provides an integrated micro-fluidic chip and system for capture, culture and administration of single cells and belongs to application of micro-fluidic chip technologies to the field of cell pharmacology analysis. The integrated micro-fluidic chip comprises a cell capture and culture unit, a drug diffusion unit and a drug supply unit, which are sealed in sequence from top to bottom; the system employing the integrated micro-fluidic chip comprises the integrated micro-fluidic chip, a fluorescence microscope, image processing equipment and a digital injection pump. A preparation method of the integrated micro-fluidic chip comprises the following steps: photo-etching baseplate plane figures on the silicon plates of the three units to etch grooves, pouring a liquid chip material into the grooves, and obtaining the three units after the liquid chip material is solidified; conducting sealing bonding and punching to obtain the integrated micro-fluidic chip. The integrated micro-fluidic chip provided by the invention integrates the three functions of capture, culture and batch differential administration of single cells and effectively avoids sample contamination.
Owner:NORTHEASTERN UNIV

Method and system of laser scanning phase-microscope imaging

The invention relates to a method and a system of laser scanning phase-microscope imaging. The system comprises a fluorescence microscope, a laser confocal laser scanning system and a photoelectric detection system, wherein the laser confocal laser scanning system is arranged in a light inlet hole of the fluorescence microscope; the photoelectric detection system is arranged at a light outlet direction of the laser confocal laser scanning system; an angle between each adjacent optical elements is regulated; a sample slice is arranged on a testing table; a fluorescence medium is added on the top of a glass slide; after being focused and in beam expansion through a dichroscope, an X-directional scanning galvanometer, a Y-directional scanning galvanometer, a scanning mirror and a tube lens, exciting light generated by the laser launches to an object lens and is focused on a biological sample; the exciting light focused on the biological sample launches to the fluorescence medium through the biological sample; the fluorescence medium is excited by the exciting light so as to launch fluorescence; the fluorescence shines and returns along the original light path through the biological sample; the emergent fluorescence launches to a filter and is focused through a convergent lens so as to enter a needle hole; the fluorescence exited by the needle hole is received and processed through the photoelectric detection system so as to obtain a relief structure of the biological sample. The method and system provided by the invention can be widely used in an imaging process of the biological sample.
Owner:PEKING UNIV

Rock core microscopic various light spectrum image-forming information comprehensive processing method

The invention discloses a comprehensive processing method of multi-spectral imaging information of core microscopy, which is used for comprehensively analyzing and processing the multi-spectral imaging data of the microscopic fluorescence, infrared and Raman of the core with oil in the geological logging of oil. At first, the color image of full color light of the polished section of the core is acquired with the fluorescence microscope; the three-spectral imaging analysis system of the microscopic fluorescence, infrared and Raman is then used for measuring the core sample in the geological logging to acquire the corresponding imaging ''spectral cube'' or spectral ''image cube''; the pixel level blending technology is used for data processing and comprehensive analysis of the three-spectral imaging information; a DWT is used for transforming; noise in the image is eliminated; the sub-images of each level are blended in a weighing way; the DWT is used for inverse transformation to acquire the blended multi-spectral image. The experiment has proven that the data blending technology of the spectral information of the image formed by multi microscopic spectra has higher practical value in the mineralogy, petrology and geochemistry of the core, when compared with each independent spectral imaging method.
Owner:BC P INC CHINA NAT PETROLEUM CORP +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products