Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1453 results about "Imaging technique" patented technology

Imaging techniques. Techniques that produce images of structures within the body. The most commonly used and simplest techniques are X-rays (to view dense structures such as bone) and contrast X-rays, in which a medium, such as barium, that is opaque to X-rays is introduced into the body. Contrast X-ray techniques include barium X-ray...

Imaging and eccentric atherosclerotic material laser remodeling and/or ablation catheter

Devices, systems, and methods for treating atherosclerotic lesions and other disease states, particularly for treatment of vulnerable plaques, can incorporate optical coherence tomography or other imaging techniques which allow a structure and location of an eccentric plaque to be characterized. Remodeling and / or ablative laser energy can then be selectively and automatically directed to the appropriate plaque structures, often without imposing mechanical trauma to the entire circumference of the lumen wall.
Owner:VESSIX VASCULAR

Methods for the compensation of imaging technique in the processing of radiographic images

The present invention relates to methods and devices for analyzing x-ray images. In particular, devices, methods and algorithms are provided that allow for the accurate and reliable evaluation of bone structure and macro-anatomical parameters from x-ray images.
Owner:IMATX

Apparatus and method for capturing still images and video using coded lens imaging techniques

An apparatus for capturing images. In one embodiment, the apparatus comprises: a coded lens array including a plurality of lenses arranged in a coded pattern and with opaque material blocking array elements that do not contain lenses; and a light-sensitive semiconductor sensor coupled to the coded lens array and positioned at a specified distance behind the coded lens array, the light-sensitive sensor configured to sense light transmitted through the lenses in the coded lens array.
Owner:REARDEN

Fluorescent silica-based nanoparticles

The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as polyethylene glycol) (PEG) The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo The nanoparticle may further be conjugated to a ligand capable of binding to a cellular component associated with the specific cell type, such as a tumor marker A therapeutic agent may be attached to the nanoparticle Radionuclides / radiometals or paramagnetic ions may be conjugated to the nanoparticle to permit the nanoparticle to be detectable by various imaging techniques.
Owner:CORNELL UNIVERSITY +1

Tooth movement system and method

A patient's dentition is analysed to determine an orthodontic treatment plan by simulating an intervention in advance. 3D imaging techniques and computer technology are used to simulate and predict tooth movement as a function of the chosen treatment, i.e. a specific orthodontic appliance. In this way treatment options can be compared and the most optimal (shortest treatment time, lowest forces . . . ) treatment for each individual patient can be selected. Sub-steps of the tooth movement are not predefined but computed based on a simulation of orthodontic elements and wire as they would be used in the orthodontic treatment of the patient. This means that the sub-steps are calculated based on the relationship between the applied loads and the tooth movement; only one of both parameters can be chosen freely. Thus, either the tooth load is specified and applied in order to calculate the resulting tooth movement or vice versa the tooth movement is specified and applied in order to calculate the tooth load that should be applied. Moreover, the current invention allows predicting the time at which brackets and / or archwire should be changed, and comparing different treatment options with respect to tooth loading and duration.
Owner:DENTSPLY IMPLANTS NV

Method for patterning carbon nanotube coating and carbon nanotube wiring

A method for making a nanocomposite electrode or circuit pattern includes forming a continuous carbon nanotube layer impregnated with a binder and patterning the binder resin using various printing or photo imaging techniques. An alternative method includes patterning the carbon nanotube layer using various printing or imaging techniques and subsequently applying a continuous coating of binder resin to the patterned carbon nanotube layer. Articles made from these patterned nanocomposite coatings include transparent electrodes and circuits for flat panel displays, photovoltaics, touch screens, electroluminescent lamps, and EMI shielding.
Owner:EIKOS

Sub-diffraction image resolution and other imaging techniques

The present invention generally relates to sub-diffraction image resolution and other imaging techniques. In one aspect, the invention is directed to determining and / or imaging light from two or more entities separated by a distance less than the diffraction limit of the incident light. For example, the entities may be separated by a distance of less than about 1000 nm, or less than about 300 nm for visible light. In one set of embodiments, the entities may be selectively activatable, i.e., one entity can be activated to produce light, without activating other entities. A first entity may be activated and determined (e.g., by determining light emitted by the entity), then a second entity may be activated and determined. The emitted light may be used to determine the positions of the first and second entities, for example, using Gaussian fitting or other mathematical techniques, and in some cases, with sub-diffraction resolution. The methods may thus be used, for example, to determine the locations of two or more entities immobilized relative to a common entity, for example, a surface, or a biological entity such as DNA or a protein. The entities may also be determined with respect to time, for example, to determine a time-varying reaction. Other aspects of the invention relate to systems for sub-diffraction image resolution, computer programs and techniques for sub-diffraction image resolution, methods for promoting sub-diffraction image resolution, methods for producing photoswitchable entities, and the like.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Interleaved approach to depth-image-based rendering of stereoscopic images

Techniques are disclosed for generating stereoscopic images. The techniques include receiving a first image frame associated with a first eye, and receiving a first depth frame associated with the first eye. The techniques further include reprojecting the first image frame based on the first depth frame to create a second image frame associated with a second eye. The techniques further include identifying a first pixel in the second image frame that remains unwritten as a result of reprojecting the first image frame, and determining a value for the first pixel based on a corresponding pixel in a prior image frame associated with the second eye. One advantage of the disclosed techniques is that DIBR reprojected image frames have a more realistic appearance where gaps are filled using pixels from a prior image for the same eye.
Owner:NVIDIA CORP

Sub-diffraction limit image resolution and other imaging techniques

The present invention generally relates to sub-diffraction limit image resolution and other imaging techniques. In one aspect, the invention is directed to determining and / or imaging light from two or more entities separated by a distance less than the diffraction limit of the incident light. For example, the entities may be separated by a distance of less than about 1000 nm, or less than about 300 nm for visible light. In one set of embodiments, the entities may be selectively activatable, i.e., one entity can be activated to produce light, without activating other entities. A first entity may be activated and determined (e.g., by determining light emitted by the entity), then a second entity may be activated and determined. The entities may be immobilized relative to each other and / or to a common entity. The emitted light may be used to determine the positions of the first and second entities, for example, using Gaussian fitting or other mathematical techniques, and in some cases, with sub-diffraction limit resolution. The methods may thus be used, for example, to determine the locations of two or more entities immobilized relative to a common entity, for example, a surface, or a biological entity such as DNA, a protein, a cell, a tissue, etc. The entities may also be determined with respect to time, for example, to determine a time-varying reaction. Other aspects of the invention relate to systems for sub-diffraction limit image resolution, computer programs and techniques for sub-diffraction limit image resolution, methods for promoting sub-diffraction limit image resolution, methods for producing photoswitchable entities, and the like.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Method and system for ultrasonic tagging of fluorescence

A method and system for localization of fluorescence in a scattering medium such as a biological tissue are provided. In comparison to other optical imaging techniques, this disclosure provides for improved spatial resolution, decreased computational time for reconstructions, and allows anatomical and functional imaging simultaneously. The method including the steps of illuminating the scattering medium with an excitation light to excite the fluorescence; modulating a portion of the emitted light from the fluorescence within the scattering medium using an ultrasonically induced variation of material properties of the scattering medium such as the refractive index; detecting the modulated optical signal at a surface of the scattering medium; and reconstructing a spatial distribution of the fluorescence in the scattering medium from the detected signal.
Owner:GENERAL ELECTRIC CO

Encoding, decoding, and representing high dynamic range images

Techniques are provided to encode and decode image data comprising a tone mapped (TM) image with HDR reconstruction data in the form of luminance ratios and color residual values. In an example embodiment, luminance ratio values and residual values in color channels of a color space are generated on an individual pixel basis based on a high dynamic range (HDR) image and a derivative tone-mapped (TM) image that comprises one or more color alterations that would not be recoverable from the TM image with a luminance ratio image. The TM image with HDR reconstruction data derived from the luminance ratio values and the color-channel residual values may be outputted in an image file to a downstream device, for example, for decoding, rendering, and / or storing. The image file may be decoded to generate a restored HDR image free of the color alterations.
Owner:DOLBY LAB LICENSING CORP

Methods and apparatus for a remote, noninvasive technique to detect core body temperature in a subject via thermal imaging

An approach to noninvasively, remotely and accurately detect core body temperature in a warm-blooded subject, human or animal, via thermal imaging. Preferred features such as the use of in-frame temperature references, specific anatomical target regions and a physiological heat transfer model help the present invention to overcome pitfalls inherent with existing thermal imaging techniques applied to physiological screening applications. This invention provides the ability to noninvasively, remotely and rapidly screen for diseases or conditions that are characterized by changes in core body temperature. One human application of this invention is the remote screening for severe acute respiratory syndrome (SARS), since fever is a common, early symptom. Other diseases and conditions that affect the core body temperature of humans or animals may also be noninvasively and remotely detected with this invention.
Owner:CARDIOWAVE

Trajectory-based deep-brain stereotactic transcranial magnetic stimulation

The present invention provides for Stereotactic Transcranial Magnetic Stimulation (sTMS) at predetermined locations with the brain or spinal cord and incorporates an array of electromagnets arranged in a specified configuration where selected coils in the array are pulsed simultaneously. Activation of foci demonstrated by functional MRI or other imaging techniques can be used to locate the neural region affected. Imaging techniques can also be utilized to determine the location of the designated targets.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV +1

System and method for geolocation using imaging techniques

An image capturing device of a wireless device is used to aid in location determination of the wireless device using imaging techniques. A scene is selected, an image of the scene is formed, and the image is then processed to determine location information based on the image. The location information is then displayed on tie wireless device or sent to a requesting entity. The scene may include a familiar landmark, a street sign or a coded sign with location information. Additionally, the scene may include an optical source transmitting an optical signal with location information.
Owner:QUALCOMM INC

Multiple-photon excitation light sheet illumination microscope

An apparatus for and method of performing multi-photon light sheet microscopy (MP-LISH), combining multi-photon excited fluorescence with the orthogonal. illumination of light sheet microscopy are provided. With live imaging of whole Drosophila and zebrafish embryos, the high performance of MP-LISH compared to current state-of-the-art imaging techniques in maintaining good signal and high spatial resolution deep inside biological tissues (two times deeper than one-photon light sheet microscopy), in acquisition speed (more than one order of magnitude faster than conventional two-photon laser scanning microscopy), and in low phototoxicity are demonstrated. The inherent multi-modality of this new imaging technique is also demonstrated second harmonic generation light sheet microscopy to detect collagen in mouse tail tissue. Together, these properties create the potential for a wide range of applications for MP-LISH in 4D imaging of live biological systems.
Owner:CALIFORNIA INST OF TECH

Motion tracking system for real time adaptive imaging and spectroscopy

Current MRI technologies require subjects to remain largely motionless for achieving high quality magnetic resonance (MR) scans, typically for 5-10 minutes at a time. However, lying absolutely still inside the tight MR imager (MRI) tunnel is a difficult task, especially for children, very sick patients, or the mentally ill. Even motion ranging less than 1 mm or 1 degree can corrupt a scan. This invention involves a system that adaptively compensates for subject motion in real-time. An object orientation marker, preferably a retro-grate reflector (RGR), is placed on a patients' head or other body organ of interest during MRI. The RGR makes it possible to measure the six degrees of freedom (x, y, and z-translations, and pitch, yaw, and roll), or ā€œposeā€, required to track the organ of interest. A camera-based tracking system observes the marker and continuously extracts its pose. The pose from the tracking system is sent to the MR scanner via an interface, allowing for continuous correction of scan planes and position in real-time. The RGR-based motion correction system has significant advantages over other approaches, including faster tracking speed, better stability, automatic calibration, lack of interference with the MR measurement process, improved ease of use, and long-term stability. RGR-based motion tracking can also be used to correct for motion from awake animals, or in conjunction with other in vivo imaging techniques, such as computer tomography, positron emission tomography (PET), etc.
Owner:UNIV OF HAWAII +3

Imaging and Eccentric Atherosclerotic Material Laser Remodeling and/or Ablation Catheter

Devices, systems, and methods for treating atherosclerotic lesions and other disease states, particularly for treatment of vulnerable plaques, can incorporate optical coherence tomography or other imaging techniques which allow a structure and location of an eccentric plaque to be characterized. Remodeling and / or ablative laser energy can then be selectively and automatically directed to the appropriate plaque structures, often without imposing mechanical trauma to the entire circumference of the lumen wall.
Owner:BOSTON SCI SCIMED INC

Method for pulmonary vein isolation and catheter ablation of other structures in the left atrium in atrial fibrillation

A catheter design for ablating AF based upon the true anatomy of the left atrium and especially the left atrial pulmonary vein junction, obtained by unique imaging techniques. The catheter design will conform to the true anatomy of the anatomical structures to be ablated and takes into account the complex 3-D geometry of the left atrium and the various sizes and shapes of the pulmonary veins and their openings into the left atrium.
Owner:MEDTRONIC INC

Multi modality brain mapping system (MBMS) using artificial intelligence and pattern recognition

A Multimodality Brain Mapping System (MBMS), comprising one or more scopes (e.g., microscopes or endoscopes) coupled to one or more processors, wherein the one or more processors obtain training data from one or more first images and / or first data, wherein one or more abnormal regions and one or more normal regions are identified; receive a second image captured by one or more of the scopes at a later time than the one or more first images and / or first data and / or captured using a different imaging technique; and generate, using machine learning trained using the training data, one or more viewable indicators identifying one or abnormalities in the second image, wherein the one or more viewable indicators are generated in real time as the second image is formed. One or more of the scopes display the one or more viewable indicators on the second image.
Owner:INT BRAIN MAPPING & INTRA OPERATIVE SURGICAL PLANNING FOUND +1

Multimodal silica-based nanoparticles

The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo. In order to target a specific cell type, the nanoparticle may further be conjugated to a ligand, which is capable of binding to a cellular component associated with the specific cell type, such as a tumor marker. In one embodiment, a therapeutic agent may be attached to the nanoparticle. To permit the nanoparticle to be detectable by not only optical fluorescence imaging, but also other imaging techniques, such as positron emission tomography (PET), single photon emission computed tomography (SPECT), computerized tomography (CT), bioluminescence imaging, and magnetic resonance imaging (MRI), radionuclides / radiometals or paramagnetic ions may be conjugated to the nanoparticle.
Owner:SLOAN KETTERING INST FOR CANCER RES +1

Sub-diffraction limit image resolution in three dimensions

The present invention generally relates to sub-diffraction limit image resolution and other imaging techniques, including imaging in three dimensions. In one aspect, the invention is directed to determining and / or imaging light from two or more entities separated by a distance less than the diffraction limit of the incident light. For example, the entities may be separated by a distance of less than about 1000 nm, or less than about 300 nm for visible light. In some cases, the position of the entities can be determined in all three spatial dimensions (i.e., in the x, y, and z directions), and in certain cases, the positions in all three dimensions can be determined to an accuracy of less than about 1000 nm. In one set of embodiments, the entities may be selectively activatable, i.e., one entity can be activated to produce light, without activating other entities. A first entity may be activated and determined (e.g., by determining light emitted by the entity), then a second entity may be activated and determined. The emitted light may be used to determine the x and y positions of the first and second entities, for example, by determining the positions of the images of these entities, and in some cases, with sub-diffraction limit resolution. In some cases, the z positions may be determined using one of a variety of techniques that uses intensity information or focal information (e.g., a lack of focus) to determine the z position. Non-limiting examples of such techniques include astigmatism imaging, off-focus imaging, or multi-focal-plane imaging.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Systems and Methods for Improving Follicular Unit Harvesting

Tools and methods are provided for dissecting and / or removing biological units, such as hair follicles, from the body surface based on the images both above and below a body surface to reduce potential damage to the removed biological unit. The invention may be used in fully automated systems and also in a hand-held devices and systems. A system may produce a series of three-dimensional images of the body surface indicating follicular unit size, shape, position, and orientation both above and below the skin surface. The images may be utilized by an automated follicular unit harvesting tool, or maybe stored for later use. Imaging techniques include devices that sense light in the visible or infrared spectrums, optical coherence tomography, and ultrahigh frequency ultrasound.
Owner:VENUS CONCEPT INC

Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions

Exemplary systems, devices, methods, apparatus and computer-accessible media for providing and / or utilizing optical frequency domain imaging (OFDI) and fluorescence of structures and, e.g., multimodality imaging using OFDI techniques and fluorescence imaging techniques are described. For example, an arrangement can provide at least one electro-magnetic radiation to an anatomical structure. Such exemplary arrangement can include at least one optical core and at least one cladding at least partially surrounding the fiber(s). A region between the optical core(s) and the cladding(s) can have an index that is different from indexes of the optical core(s) and the cladding(s). The arrangement can also include at least one apparatus which is configured to transmit the radiation(s) via the optical core(s) and the cladding(s) to the anatomical structure.
Owner:THE GENERAL HOSPITAL CORP +1

Method for patterning carbon nanotube coating and carbon nanotube wiring

A method for making a nanocomposite electrode or circuit pattern includes forming a continuous carbon nanotube layer impregnated with a binder and patterning the binder resin using various printing or photo imaging techniques. An alternative method includes patterning the carbon nanotube layer using various printing or imaging techniques and subsequently applying a continuous coating of binder resin to the patterned carbon nanotube layer. Articles made from these patterned nanocomposite coatings include transparent electrodes and circuits for flat panel displays, photovoltaics, touch screens, electroluminescent lamps, and EMI shielding.
Owner:ARTHUR DAVID J +1

Element-specific X-ray fluorescence microscope and method of operation

An element-specific imaging technique utilizes the element-specific fluorescence X-rays that are induced by primary ionizing radiation. The fluorescence X-rays from an element of interest are then preferentially imaged onto a detector using an optical train. The preferential imaging of the optical train is achieved using a chromatic lens in a suitably configured imaging system. A zone plate is an example of such a chromatic lens; its focal length is inversely proportional to the X-ray wavelength. Enhancement of preferential imaging of a given element in the test sample can be obtained if the zone plate lens itself is made of a compound containing substantially the same element. For example, when imaging copper using the Cu La spectral line, a copper zone plate lens is used. This enhances the preferential imaging of the zone plate lens because its diffraction efficiency (percent of incident energy diffracted into the focus) changes rapidly near an absorption line and can be made to peak at the X-ray fluorescence line of the element from which it is fabricated. In another embodiment, a spectral filter, such as a multilayer optic or crystal, is used in the optical train to achieve preferential imaging in a fluorescence microscope employing either a chromatic or an achromatic lens.
Owner:CARL ZEISS X RAY MICROSCOPY

Surgical meshes with radiopaque coatings

According to an aspect of the present invention, implantable medical articles are provided, which comprise a surgical mesh that is at least partially covered with a coating that comprises a radiopaque material such as a metal or a metallic compound. The radiopaque material is present in the coating in an amount such that the coated portions of the mesh are visible using radiographic imaging techniques. Other aspects of the invention pertain to methods of making and using such medical articles.
Owner:BOSTON SCI SCIMED INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products