Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2038results about "Brackets" patented technology

Interactive orthodontic care system based on intra-oral scanning of teeth

Interactive, computer based orthodontist treatment planning, appliance design and appliance manufacturing is described. A scanner is described which acquires images of the dentition which are converted to three-dimensional frames of data. The data from the several frames are registered to each other to provide a complete three-dimensional virtual model of the dentition. Individual tooth objects are obtained from the virtual model. A computer-interactive software program provides for treatment planning, diagnosis and appliance from the virtual tooth models. A desired occlusion for the patient is obtained from the treatment planning software. The virtual model of the desired occlusion and the virtual model of the original dentition provide a base of information for custom manufacture of an orthodontic appliance. A variety of possible appliance and appliance manufacturing systems are contemplated, including customized archwires and customized devices for placement of off-the shelf brackets on the archwires, and removable orthodontic appliances.
Owner:ORAMETRIX

Method and system for comprehensive evaluation of orthodontic care using unified workstation

A method and system for orthodontic treatment planning, evaluation and quality measurement is provided comprising a workstation having computing platform, a graphical user interface, a processor and a computer storage medium containing digitized records pertaining to a patient. The digitized records include image and other types of data. The computer storage medium further includes a set of software instructions providing graphical user interface tools for providing a user with access to the digitized records for planning orthodontic treatment of a patient. Also provided are reference databases for aiding in the decision process during treatment selection, treatment planning and treatment delivery and progress monitoring and evaluation. Also provided are parameter or criteria measurement techniques and generally acceptable thresholds, which can be updated through learning process and through acquisition of patient data. Once the treatment is planned, the virtual dentition model of the patient in the proposed treatment set-up or the target state is evaluated using several virtual model evaluation features and criteria.
Owner:ORAMETRIX

Unified workstation for virtual craniofacial diagnosis, treatment planning and therapeutics

An integrated system is described in which digital image data of a patient, obtained from a variety of image sources, including CT scanner, X-Ray, 2D or 3D scanners and color photographs, are combined into a common coordinate system to create a virtual three-dimensional patient model. Software tools are provided for manipulating the virtual patient model to simulation changes in position or orientation of craniofacial structures (e.g., jaw or teeth) and simulate their affect on the appearance of the patient. The simulation (which may be pure simulations or may be so-called “morphing” type simulations) enables a comprehensive approach to planning treatment for the patient. In one embodiment, the treatment may encompass orthodontic treatment. Similarly, surgical treatment plans can be created. Data is extracted from the virtual patient model or simulations thereof for purposes of manufacture of customized therapeutic devices for any component of the craniofacial structures, e.g., orthodontic appliances.
Owner:ORAMETRIX

Interactive orthodontic care system based on intra-oral scanning of teeth

Interactive, computer based orthodontist treatment planning, appliance design and appliance manufacturing is described. A scanner is described which acquires images of the dentition which are converted to three-dimensional frames of data. The data from the several frames are registered to each other to provide a complete three-dimensional virtual model of the dentition. Individual tooth objects are obtained from the virtual model. A computer-interactive software program provides for treatment planning, diagnosis and appliance from the virtual tooth models. A desired occlusion for the patient is obtained from the treatment planning software. The virtual model of the desired occlusion and the virtual model of the original dentition provide a base of information for custom manufacture of an orthodontic appliance. A variety of possible appliance and appliance manufacturing systems are contemplated, including customized archwires and customized devices for placement of off-the shelf brackets on the archwires, and removable orthodontic appliances.
Owner:ORAMETRIX

Orthodontic treatment planning with user-specified simulation of tooth movement

An interactive, software-based treatment planning method to correct a malocclusion is described. The method can be performed on an orthodontic workstation in a clinic or at a remote location such as a lab or precision appliance manufacturing center. The workstation stores a virtual three-dimensional model of the dentition of a patient and patient records. The virtual model is manipulated by the user to define a target situation for the patient, including a target archform and individual tooth positions in the archform. Parameters for an orthodontic appliance, such as the location of orthodontic brackets and resulting shape of an orthodontic archwire, are obtained from the simulation of tooth movement to the target situation and the placement position of virtual brackets. The treatment planning can also be executed remotely by a precision appliance service center having access to the virtual model of the dentition. In the latter situation, the proposed treatment plan is sent to the clinic for review, and modification or approval by the orthodontist. The method is suitable for other orthodontic appliance systems, including removable appliances such as transparent aligning trays.< / PTEXT>
Owner:ORAMETRIX

Scanning system and calibration method for capturing precise three-dimensional information of objects

A scanning system includes a hand-held scanning device that generates two-dimensional images of a pattern reflected off an object. The system also includes a memory and processing unit. The memory stores a calibration table for the scanner and received scanned bitmap images. The processing unit generates three-dimensional information as to a scanned object. The scanning can be performed without knowledge or even precise control of the position of the object relative to the scanner. Random movement of the object during scanning is also possible. For example, the scanner is simply swept over the surface of the object by hand. Three-dimensional information of the object is obtained from the captured images using a calibration table for the scanner. A method of calibration of the scanner in X, Y and Z directions is also described. The scanner can be used for a variety of purposes, including medical and industrial purposes. The illustrated embodiment is in-vivo scanning of human teeth for purposes of orthodontic treatment planning and diagnosis.
Owner:ORAMETRIX

System and method for automating medical procedures

ActiveUS20150057675A1Most comfortMinimum durationDental implantsDiagnosticsDisplay deviceVisual perception
A system and a method for automating a medical process including a memory storing a software program, a computer connected to the memory for running the software program, a display connected to the computer for generating a visual representation of output data generated by the computer running the program, a user interface connected to the computer for obtaining image data representing a configuration of a patient treatment space and fixed markers in the treatment space and storing the image data in the memory, a robot arm connected to the computer, and a medical tool mounted on the robot arm wherein when a human inputs a selected treatment procedure into the computer, the computer runs the software program to generate a tool path based upon the treatment procedure and the image data, and the computer operates the robot arm to move the medical tool along the tool path without human guidance, and wherein the data generated during the treatment procedure is stored, analyzed, and shared among collaborating computer systems.
Owner:BRACHIUM

Method and system for optimizing dental aligner geometry

Method and system for establishing an initial position of a tooth, determining a target position of the tooth in a treatment plan, calculating a movement vector associated with the tooth movement from the initial position to the target position, determining a plurality of components corresponding to the movement vector, and determining a corresponding one or more positions of a respective one or more attachment devices relative to a surface plane of the tooth such that the one or more attachment devices engages with a dental appliance are provided.
Owner:ALIGN TECH

Method and system for comprehensive evaluation of orthodontic treatment using unified workstation

A method and workstation for evaluation of an orthodontic treatment plan for a patient. The workstation is based on a computing platform having a graphical user interface, a processor and a computer storage medium containing digitized records pertaining to a patient including image data (3D image data and / or 2D image data). The workstation further includes a set of software instructions providing graphical user interface tools by which the user can create a proposed treatment plan (proposed position of the teeth at the end of treatment) in three dimensions. The workstation also provides tools for evaluation of the proposed treatment plan.
Owner:ORAMETRIX

Interactive orthodontic care system based on intra-oral scanning of teeth

Interactive, computer based orthodontist treatment planning, appliance design and appliance manufacturing is described. A scanner is described which acquires images of the dentition which are converted to three-dimensional frames of data. The data from the several frames are registered to each other to provide a complete three-dimensional virtual model of the dentition. Individual tooth objects are obtained from the virtual model. A computer-interactive software program provides for treatment planning, diagnosis and appliance from the virtual tooth models. A desired occlusion for the patient is obtained from the treatment planning software. The virtual model of the desired occlusion and the virtual model of the original dentition provide a base of information for custom manufacture of an orthodontic appliance. A variety of possible appliance and appliance manufacturing systems are contemplated, including customized archwires and customized devices for placement of off-the shelf brackets on the archwires, and removable orthodontic appliances.
Owner:ORAMETRIX

Tooth movement system and method

A patient's dentition is analysed to determine an orthodontic treatment plan by simulating an intervention in advance. 3D imaging techniques and computer technology are used to simulate and predict tooth movement as a function of the chosen treatment, i.e. a specific orthodontic appliance. In this way treatment options can be compared and the most optimal (shortest treatment time, lowest forces . . . ) treatment for each individual patient can be selected. Sub-steps of the tooth movement are not predefined but computed based on a simulation of orthodontic elements and wire as they would be used in the orthodontic treatment of the patient. This means that the sub-steps are calculated based on the relationship between the applied loads and the tooth movement; only one of both parameters can be chosen freely. Thus, either the tooth load is specified and applied in order to calculate the resulting tooth movement or vice versa the tooth movement is specified and applied in order to calculate the tooth load that should be applied. Moreover, the current invention allows predicting the time at which brackets and / or archwire should be changed, and comparing different treatment options with respect to tooth loading and duration.
Owner:DENTSPLY IMPLANTS NV

Interactive orthodontic care system based on intra-oral scanning of teeth

Interactive, computer based orthodontist treatment planning, appliance design and appliance manufacturing is described. A scanner is described which acquires images of the dentition which are converted to three-dimensional frames of data. The data from the several frames are registered to each other to provide a complete three-dimensional virtual model of the dentition. Individual tooth objects are obtained from the virtual model. A computer-interactive software program provides for treatment planning, diagnosis and appliance from the virtual tooth models. A desired occlusion for the patient is obtained from the treatment planning software. The virtual model of the desired occlusion and the virtual model of the original dentition provide a base of information for custom manufacture of an orthodontic appliance. A variety of possible appliance and appliance manufacturing systems are contemplated, including customized archwires and customized devices for placement of off-the shelf brackets on the archwires, and removable orthodontic appliances.
Owner:ORAMETRIX

Self-ligating orthodontic bracket

An orthodontic bracket having a bracket body configured to be mounted to a tooth includes an archwire slot having a base surface defining a base plane and a slide engagement track defining a translation plane. The translation plane is angled with respect to the base plane. A ligating slide is engaged with the slide engagement track of the bracket body and movable along the slide engagement track and parallel to the translation plane between an opened position, in which an archwire is insertable into the archwire slot, and a closed position, in which the archwire is retained within the archwire slot. The translation plane is angled with respect to the base plane so as to prevent the ligating slide from contacting the gingiva surrounding the tooth when the ligating slide is moved to the opened position.
Owner:ORMCO CORP

Virtual bracket placement and evaluation

A method and apparatus for facilitating placement and evaluation of virtual appliances on virtual teeth of an orthodontic patient are described. Positioning references comprising bracket height, occlusal plane, or any arbitrary plane are provided to facilitate desired placement of virtual appliances on virtual teeth model. The process can be applied with any dentition state of a patient such as malocclusion, target state from treatment, or intermediate monitored state during the course of a treatment. An unified workstation for treatment planning provides the computer software tools for verification, simulation and evaluation of the virtual appliance placement. The process enables proper planning of treatment for an orthodontic patient suffering from malocclusion involving bonding of virtual brackets to the surface of the patient's virtual teeth with archwires placed in the slots of the brackets, so as to realize the desired results from the treatment in the most desired manner.
Owner:ORAMETRIX

Orthodontic bracket and method of attaching orthodontic brackets to teeth

ActiveUS20070087302A1Minimal size profileEnhance patient comfortAdditive manufacturing apparatusBracketsIndirect MethodPhysical model
An orthodontic bracket having an opening for receiving a wire, but without a base to create a lever arm when the bracket is oriented in free space at a customized angle relative to a tooth surface. The bracket can be embedded into or encapsulated by an adhesive that is bonded to the tooth. A clip is provided for holding the bracket in position and occluding the opening while the adhesive is applied. And indirect methods of attaching the brackets to teeth are provided wherein the brackets can be attached to the lingual side of the teeth in a low-profile arrangement. A first method includes the step of positioning the brackets on a physical model of the teeth by using a positioning machine. A second method includes the step of positioning virtual brackets on a virtual model of the teeth using software, then generating a physical transfer try using rapid prototyping.
Owner:REISING BRIAN C

Orthodontic bracket

The present invention provides an improved self-ligating orthodontic bracket. According to one embodiment, the improved orthodontic bracket includes a mounting base for attachment to a tooth surface, an archwire slot formed upon the base and sized for receiving an orthodontic archwire, a channel formed upon the base and transversely oriented to the archwire slot, and a ligating slide member slideably retained within the channel and closeable over the archwire slot for retaining the orthodontic archwire therein, and wherein the ligating slide member includes at least one coplanar resilient retention mechanism for exerting retention forces coplanar with the ligating slide member for holding the ligating slide member in a closed position. In one embodiment, the improved orthodontic bracket comprises a bracket with a ligating slide member slideably retained within a dovetail shaped channel.
Owner:ORTHODONTIC RES & DEV

Rapid prototyped transfer tray for orthodontic appliances

The present invention is directed to computer-implemented methods of making a transfer tray using rapid prototyping techniques, where the gingival edge of the tray is defined to intersect with at least one receptacle for receiving an orthodontic appliance. This tray configuration helps to minimize the travel distance of the tray when placing the tray over a patient's teeth, while also preserving a high degree of mechanical retention for retaining the appliance until such time that the appliance is bonded to the tooth. Other aspects of the tray and associated methods of bonding are directed to a frangible web that extends over the gingival portion of the receptacle and fractures to facilitate tray removal after bonding.
Owner:3M INNOVATIVE PROPERTIES CO

Vibrating dental devices

InactiveUS20100055634A1Speed boney remodelingEnhance boney remodelingBracketsDental toolsDental EquipmentBite plates
A variety of improvements to the vibrating devices for dental remodeling are provided, including improved bite plate designs that accommodate common patient bite structure, a connector for a bite plate, a sizing tray for same, as well as better motors providing improved performance characteristics for an extraoral vibrator, and a completely intraoral vibrating dental plate with very thin cross section.
Owner:ADVANCED ORTHODONTICS & EDUCATION ASSOC LLC

Invisible spring aligner

An orthodontic appliance for positioning one or more anterior teeth in a jaw of a patient comprising a clear labial component which extends over the labial surfaces of the patient's teeth and which has an anterior portion and a pair of posterior portions on opposite sides of the dental arch. The anterior and posterior portions of the labial component are in direct contact with the exterior surfaces of the teeth so that no other components of the appliance are located between the anterior and posterior portions of the labial component and those exterior surfaces of the teeth. A lingual component is located within the patient's dental arch for supporting the appliance and for applying force to the patient's anterior teeth, the lingual component operating to move the anterior teeth against the anterior portion of the labial component which serves as a reference against which the teeth are positioned.
Owner:GREAT LAKES ORTHODONTICS

Method and apparatus for registering a known digital object to scanned 3-D model

Method and apparatus for registering an object of known predetermined geometry to scanned three dimensional data such that the object's location may be verified. Such a known object may comprise a less than ideal three-dimensional (3-D) digital object such as a tooth, a dental appliance (e.g., as a tooth bracket model) or other like object, including portions thereof. Knowledge of such an object's location is generally helpful in planning orthodontic treatment, particularly where the location of the object needs to be determined or confirmed or where incomplete or poor scan data is obtained. Aspects of the present invention provide methods of effectively verifying dental appliance location and displaying appliance locations using a computer and three-dimensional models of teeth.
Owner:ORAMETRIX

Orthodontic appliance by using a shape memory polymer

InactiveUS20050003318A1Easily mounted to patient 's teethAppealing estheticArch wiresBracketsGlass transitionShape-memory polymer
Disclosed is an orthodontic appliance for straightening misaligned teeth. The orthodontic appliance is made of a shape memory polymer, and is formed in a cap-shaped tray capable of covering the maxillary or mandibular teeth. An original shape of the tray-type orthodontic appliance made of the shape memory polymer is identical to that of perfectly aligned teeth obtained after orthodontic treatment, and a temporarily formed shape of the tray-type orthodontic appliance is identical to that of the teeth alignment of a patient before orthodontic treatment. The tray-type orthodontic appliance is restored to the original shape memorized at a temperature above a specified glass transition temperature. The orthodontic appliance can be easily manufactured to perform orthodontic treatment, also providing appealing esthetics, in which the orthodontic appliance can be colored to be identical to a tooth with inexpensive manufacturing cost.
Owner:CHOI YOUNG KYU

Methods and apparatus for bonding orthodontic appliances using photocurable adhesive material

A bonding tray for indirect bonding of orthodontic appliances includes a body adapted to fit over at least a portion of the dental arch. One or more orthodontic appliances are releasably connected to the body, and a photocurable adhesive material extends across the base or bonding pad of each appliance for bonding the appliance to a tooth. An outer surface of the body includes at least one receptacle for removably receiving a source of light in order to facilitate curing the photocurable adhesive material.
Owner:3M INNOVATIVE PROPERTIES CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products