Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3539 results about "Optical scanning" patented technology

Optical scanning. noun. the process of interpreting data in printed, handwritten, bar-code, or other visual form by a device (optical scanner or reader) that scans and identifies the data.

Optical scanning device and image forming apparatus

A deflecting unit deflects a light beam emitted by each of a plurality of light-beam emitting units independently to scan surfaces of different bodies to be scanned. Each of a plurality of light-receiving units receives the deflected light beam at a predetermined position in a direction of the deflection. An incident angle of the deflected light beam with respect to a scanning line extending in a direction of scanning on a light-receiving surface of the light-receiving unit is set to be identical for all of the light-receiving units.
Owner:RICOH KK

Optical scanning head

The [ornamental] design for a bar code Scanner using the Light Emitting Diode (LED), Optical Scanner assembly and Charge-Coupled Devices (CCD) capable of reading the barcode symbols at the variable distance, as shown and described. The optical passive elements for increasing the depth of field and method of fabricating the scanning head by mass-production techniques are also disclosed.
Owner:SYMBOL TECH INC

System for vending products and services using an identification card and associated methods

A highly integrated and flexible system for vending products and services to consumers. The system receives information in advance of the vend by having the consumer insert an identification (ID) card, preferably a driver's license, into a point-of-purchase terminal (referred to as an OSU device). The OSU device preferably contains an Optical Scanning Unit (OSU), capable of scanning the textual information on the ID card. In one embodiment, the scanned information is compared against optical templates present in the system to discern or verify the information on the ID card, and is then used by the system to enable or disable the vending transaction, and / or to allow access to several preregistered system accounts.
Owner:CNT TECH

Information system and method for providing information using a holographic element

In the following, the essential points are summarized again by means of groups of characteristics which each individually and in combination with one another characterize the invention specifically: 1. Information system for providing information in correlation with light incident on an eye, having a holographic element disposed in front of the eye, and an optical scanning device which detects light incident on the eye by way of the holographic element. 2. Information system according to Point 1, wherein the optical scanning device is at a fixed predetermined angular ratio with respect to the holographic element. 3. Information system according to Point 1 or 2, wherein the optical scanning device detects light which is refracted by the holographic element before it impinges on the eye and does not enter the eye. 4. Information system according to one of the preceding points, wherein the optical scanning device detects light which was first reflected back from the eye and was then refracted by the holographic element. 5. Information system according to one of the preceding points, wherein the holographic element refracts light originating from the field of vision of the eye only at several discrete wavelengths in the visible range before the light impinges on the eye for the detection by the optical scanning device, and refracts light reflected back from the eye only at one discrete wavelength in the infrared range for the detection by the optical scanning device. 6. Information system according to one of the preceding points, wherein the holographic element refracts light originating from the field of vision of the eye at fewer than 20, fewer than 10 or fewer than 5 discrete wavelengths in the visible range either before the light impinges on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 7. Information system according to one of the preceding points, wherein the holographic element refracts light originating from the field of vision of the eye at a discrete wavelength in the infrared range either before the light impinges on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 8. Information system according to one of the preceding points, wherein the holographic element refracts light reflected back by the eye only at a discrete wavelength in the infrared range for the detection by the optical scanning device. 9. Information system according to one of the preceding points, wherein the holographic element refracts light of one or several discrete wavelengths, at which the optical scanning device has a high sensitivity. 10. Information system according to one of the preceding points, wherein the holographic element refracts light a several discrete wavelengths such that the refracted light is guided to a common point, and the angle of incidence of the light on this point permits a clear optionally also wavelength-independent conclusion on the angle of incidence of the light upon the holographic element. 11. Information system according to one of the preceding points, having an optical projection device which projects light into the eye by way of the holographic element. 12. Information system according to Point 11, wherein the light detected by the optical detection device and the light projected in front of the optical projection device run in the opposite direction through a common light guiding lens system and can be focused such by the optical scanning device or projection device that their respective beams describe the same path from or into the eye. 13. Information system for providing information in correlation with information obtained from an eye, having a holographic element disposed in front of the eye, and an optical projection device which projects light into the eye by way of the holographic element. 14. Information system according to one of Points 11 to 13, wherein the optical projection device projects light only at one or several discrete wavelengths in the visible range and / or at a wavelength in the infrared range. 15. Information system according to one of Points 11 to 14, wherein the holographic element refracts the wavelengths of the projected light. 16. Information system according to one of Points 11-15, wherein the optical projection device is in a fixed predetermined angular ratio with respect to the holographic element. 17. Information system according to Point 16, wherein the holographic element comprises one or more optical flags, whose light reflection characteristics can be used by the information system by means of a photodetector for calibrating a projection angle of the optical projection device and / or a light guiding device. 18. Information system according to Point 17, including Point 12, wherein the information system uses the light reflection characteristics of the optical flags for calibrating a scanning angle of the optical scanning device and / or a light guiding device. 19. Information system according to Point 17, wherein the optical flags are generated in that reflecting elements are imaged during the creating of the holographic element such in the holographic element that they (something is missing) reflect light of one or several wavelengths which, corresponding to the predetermined angular ratio with respect to the optical projection device is incident on the holographic element, back along the path of incidence. 20. Information system according to Point 19, wherein the photodetector device has a splitter mirror which is arranged such in the light beam of the optical projection device that it guides a portion of the light, which impinges on the splitter mirror against the projection direction, in the direction of a photodetector which detects in at least two areas situated concentrically around one another. 21. Information system according to one of the preceding points, wherein the holographic element has light-refracting characteristics at one or several discrete wavelengths, which correspond to a reflection on the concave side of an area constructed according to the curvature of a rotationally symmetrical ellipsoid. 22. Information system according to one of the preceding points, wherein the holographic element has light refracting characteristics at one or several discrete wavelengths, which correspond to a refraction on the concave side of an area constructed according to the curvature of a rotationally symmetrical ellipsoid, which refraction corresponds to a reflection on a respective conical surface which is rotationally symmetrical about the axis of rotation of the ellipsoid and is perpendicular with respect to the ellipsoid at the site of the refraction. 23. Method of providing information in correlation with light incident on an eye, whereby a holographic element is disposed in front of the eye, and an optical scanning device detects the light incident on the eye by means of the holographic element. 24. Method according to Point 23, whereby the optical scanning device is at a fixed predetermined angular ratio with respect to the holographic element. 25. Method according to Point 23 or 24, whereby the optical scanning device detects light which is refracted by the holographic element before impinging on the eye and does not enter the eye. 26. Method according to one of Points 23 to 25, whereby the optical scanning device detects light which was first reflected back from the eye and was then refracted by the holographic element. 27. Method according to one of Points 23 to 26, whereby the holographic element refracts light originating from the field of vision of the eye only at several discrete wavelengths in the visible range before its impinging on the eye for the detection by the optical scanning device and refracts light reflected back from the eye only at a discrete wavelength in the infrared range for the detection by the optical scanning device. 28. Method according to one of Points 23 to 27, whereby the holographic element refracts light originating from the field of vision of the eye at fewer than 20, fewer than 10 or fewer than 5 discrete wavelengths in the visible range either before its impinging on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 29. Method according to one of Points 23 to 28, whereby the holographic element refracts light originating from the visual field of the eye at a discrete wavelength in the infrared range either before its impinging on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 30. Method according to one of Points 23 to 29, whereby the holographic element refracts light reflected back from the eye only at a discrete wavelength in the infrared range for the detection by the optical scanning device. 31. Method according to one of Points 23 to 30, whereby the holographic element refracts light of one or several discrete wavelengths, at which the optical scanning device has a high sensitivity. 32. Method according to one of Points 23 to 31, whereby the holographic element refracts light at several discrete wavelengths such that the refracted light is guided to a common point, an the angle of incidence of the light onto this point allows a clear, optionally also wavelength-independent conclusion on the angle of incidence of the light upon the holographic element. 33. Method according to one of Points 23 to 32, whereby an optical projection device projects light by way of the holographic element into the eye. 34. Method according to Point 33, whereby the light detected by the optical scanning device and the light projected in front of the optical projection device run in the opposite direction through a common light guiding lens system and can be focused such by the optical scanning device or projection device that their respective beams describe the same path from or into the eye. 35. Method of providing information in correlation with information obtained from an eye, whereby a holographic element is disposed in front of the eye, and an optical projection device projects light by way of the holographic element into the eye. 36. Method according to points 33 to 35, whereby the optical projection device projects light only at one or several discrete wavelengths in the visible range and / or at a wavelength in the infrared range. 37. Method according to one of Points 33 to 36, whereby the holographic element refracts the wavelengths of the projected light. 38. Method according to one of Points 33 to 37, whereby the optical projection device is in a fixed predetermined angular ratio with respect to the holographic element. 39. Method according to Point 38, whereby the holographic element is equipped with one or more optical flags, whose light reflection characteristics can be used by means of a photodetector device for calibrating a projection angle of the optical projection device and / or a light guiding device. 40. Method according to Point 39, including Point 34, whereby the light reflection characteristics of the optical flags are used for calibrating a scanning angle of the optical scanning device and / or a light guiding device. 41. Method according to Point 39, whereby the optical flags are generated in that reflecting elements are imaged during the creating of the holographic element such in the holographic element that they beam light of one or more wavelengths which, corresponding to the predetermined angular ratio with respect to the optical projection device is incident on the holographic element, back along the incidence path. 42. Method according to Point 41, whereby the photodetector device is equipped with a photodetector detecting in at least two areas situated concentrically around one another, and a splitter mirror which is arranged such in the light beam of the optical projection device that it directs a portion of the light impinging on the splitter mirror against the projecting direction, in the direction of the photodetector. 43. Method according to one of Points 23 to 42, whereby the holographic element has light-refracting characteristics at one or several discrete wavelengths which correspond to a reflection on the concave side of an area constructed according to a curvature of a rotationally symmetrical ellipsoid. 44. Method according to one of Points 23 to 43, whereby the holographic element has light-refracting characteristics at one or several discrete wavelengths, which correspond to a refraction on the concave side of an area constructed according to a curvature of a rotationally symmetrical ellipsoid, which refraction corresponds to a reflection on a respective conical surface rotationally symmetrical about the axis of rotation of the ellipsoid, which conical surface is perpendicular with respect to the ellipsoid at the site of the refraction. While the preceding description with respect to the title is limited to embodiments falling under the initially mentioned generic terms “scanning information system” and “projecting information system”, each individual discussed characteristic of their disclosure can also be used in an embodiment of the systems, devices and methods initially identified by reference to their full content. The applications by the same applicant and / or the same inventors mentioned in the present application should be considered to be a correlated invention complex.
Owner:APPLE INC

Embedding and Reading Codes on Objects

Watermarks and / or other related machine-readable coding techniques are used to provide data on or in objects. In one implementation a method includes providing an object with first machine-readable information. The first machine-readable information is provided on or in the object with a radio frequency identification (RFID) tag. The method also includes providing second machine-readable information on or in the object. The second machine-readable information is readable from optical scan data representing at least a portion of an object surface including the second-machine-readable information. The second machine-readable information is provided to cooperate with the first machine-readable information. Other implementations are provided as well.
Owner:DIGIMARC CORP

Agile high sensitivity optical sensor

An agile optical sensor based on scanning optical interferometry is proposed. The preferred embodiment uses a retroreflective sensing design while another embodiment uses a transmissive sensing design. The basic invention uses wavelength tuning to enable an optical scanning beam and a wavelength dispersive element like a grating to act as a beam splitter and beam combiner to create the two beams required for interferometry. A compact and environmentally robust version of the sensor is an all-fiber in-line low noise delivery design using a fiber circulator, optical fiber, and fiber lens connected to a Grating-optic and reflective sensor chip.
Owner:NUONICS

Near field optical scanning system employing microfabricated solid immersion lens

A solid immersion lens integrated on a flexible support such as a cantilever or membrane is described, together with a method of forming the integrated structure.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV

Optical scanning probe system

An identification circuit (131) recognizes optical probes (112A, 112B) of different scanning types that are connected to a light source unit (113) and a control device (114), the frequency of the drive signal of a control circuit (130) for driving a scanner inside the optical probe is varied by this recognition signal, corresponding drive signals are applied to the optical probes connected, the scanner of each probe is scanned, and two-dimensional optical information is imaged by an imaging device (115) and displayed on a monitor (116).
Owner:OLYMPUS CORP

Information system and method for providing information using a holographic element

In an information system and a method for providing information in correlation with light that is incident on an eye, a pair of spectacles includes a holographic element that is supported in front of the eye of a wearer of the spectacles. An optical scanning device detects light that is incident on the eye via the holographic element.
Owner:APPLE INC

Forward scanning imaging optical fiber probe

Probes, and systems and methods for optically scanning a conical volume in front of a probe, for use with an imaging modality, such as Optical Coherence Tomography (OCT). A probe includes an optical fiber having a proximal end and a distal end and defining an axis, with the proximal end of the optical fiber being proximate a light source, and the distal end having a first angled surface. A refractive lens element is positioned proximate the distal end of the optical fiber. The lens element and the fiber end are both configured to separately rotate about the axis so as to image a conical scan volume when light is provided by the source. Reflected light from a sample under investigation is collected by the fiber and analyzed by an imaging system. Such probes may be very compact, e.g., having a diameter 1 mm or less, and are advantageous for use in minimally invasive surgical procedures.
Owner:CALIFORNIA INST OF TECH

Optical scanning probe device using low coherence light

A flexible shaft driven to rotate is inserted through a transparent sheath having pliability. By a fiber inserted through the inside thereof, low-coherence light is guided and is made to exit to a living-body tissue side which is an observation target through a lens and a prism forming an exit and entrance portion at the tip portion. Subsequently, the light reflected on the living-body tissue side is guided in order to produce an image. In that case, a positioning member for keeping the exit and entrance portion and the living-body tissue at a proper distance is formed at the tip portion of the sheath or the tip portion of an endoscope through which an optical probe is inserted and, therefore, a stable tomogram image can be produced.
Owner:OLYMPUS CORP

Method and device for optical ophthalmic therapy

Optical scanning system and method for performing therapy on trabecular meshwork of a patient's eye, including a light source for producing alignment and therapeutic light, a scanning device for deflecting the alignment and therapeutic light to produce an alignment therapeutic patterns of the alignment and therapeutic light, and an ophthalmic lens assembly for placement over a patient's eye that includes a reflective optical element for reflecting the light patterns onto the trabecular meshwork of the patient's eye. The reflective optical element can be a continuous annular mirror (e.g. smooth or with multiple facets) to image the entire trabecular meshwork, or a reflective optical element that moves in coordination with the deflection of the beam. Visualization of the alignment and therapeutic patterns of light on the eye can be implemented by reflection thereof off a visualization mirror that transmits a portion of light emanating from the trabecular meshwork.
Owner:IRIDEX CORP

Ingestible Endoscopic Optical Scanning Device

An ingestible scanning device includes, in an embodiment, a capsule housing having a transparent window and sized so as to be ingestible, a photo-sensing array located within the capsule housing, a mirror located within the housing and oriented to direct an image from a surface outside the transparent window to the photo-sensing array, and a light source for illuminating the surface outside the transparent window.
Owner:INNURVATION

Apparatus and method for gathering and utilizing data

Disclosed is a device and method for obtaining and utilizing data. A handheld device which is capable of optically scanning or receiving RFID signals from an object, storing the data in an internal memory, and then re-transmitting the data is disclosed. The re-transmitted data may trigger access to an internet web site or other database which provides a user with detailed information relating to the scanned object. The device is also usable as a re-configurable electronic key or may be built into electronic devices to allow reconfiguration by scanning a symbol.
Owner:INTERMEC IP

Agile-beam laser array transmitter

An Agile-Beam Laser Array Transmitter (ABLAT) uses an array of emitters and an array of lenses to project electromagnetic beams over a wide angular coverage area in the far field. Differences in the separation pitches of the two arrays allows the ABLAT to project beams to contiguous and / or overlapping positions, depending on the ratio of the separation pitches and the lens focal length. Compared to other beam steering technology, the ABLAT is a smaller, lighter, and more efficient means of projecting beams over wider angular coverage areas. Various embodiments can be used in any beam steering application, including, but not limited to: free-space optical communications; light detection and ranging (lidar); optical scanning (e.g., retinal or bar-code scanning); display projection; image capture; optical character recognition; scanning laser microscopy; non-destructive testing; printing; facsimiles; map making; web inspection; color print processing; phototypesetting and platemaking; laser marking; material processing; DNA analysis; and drug discovery.
Owner:MASSACHUSETTS INST OF TECH

Laser scanner and method for optically scanning an environment

A laser scanner for optically scanning and measuring an environment comprises a light transmitter having a predetermined transmission power for emitting a light beam. The emitted light beam is reflected at a measurement point in the environment. The reflected light beam is received with a certain intensity by a receiver. The transmission power is adjustable as a function of the intensity of the reflected light beam. Furthermore, a gray-scale value of the measurement point is determined as a function of the transmission power adjusted.
Owner:FARO TECH INC

Secure Electronic Ticketing using Mobile Communication Devices over the Internet

The invention consists of a method and system for secure mobile ticketing through the use of a mobile device with display output and data input capabilities. The system utilizes a cryptographic security string appended to a URL and embedded in a 2D barcode to securely create an electronic ticket which is displayed on the mobile device display for redemption, redeem the displayed electronic ticket by means of optical scanning, and optionally register and authenticate a ticket scanning unit. The system utilizes real-time internet communication with a remote server for ticket distribution, redemption and ticket scanning unit registration and authentication to restrict unauthorized creation or redemption of electronic tickets and to reduce queuing.
Owner:SKYCORE

MEMS scanner with dual magnetic and capacitive drive

A MEMS scanning device includes more than one type of actuation. In one approach capacitive and magnetic drives combine to move a portion of the device along a common path. In one such structure, the capacitive drive comes from interleaved combs. In another approach, a comb drive combines with a pair of planar electrodes to produce rotation of a central body relative to a substrate. In an optical scanning application, the central body is a mirror. In a biaxial structure, a gimbal ring carries the central body. The gimbal ring may be driven by more than one type of actuation to produce motion about an axis orthogonal to that of the central body. In another aspect, a MEMS scanning device is constructed with a reduced footprint.
Owner:MICROVISION

Integrated optical scanning image acquisition and display

An apparatus and method for providing image acquisition and / or image display in a limited region of interest (ROI). The apparatus comprises a micro electro-mechanical system (MEMS), preferably integrating a light source, a cantilever, a lens, an actuator, a light detector, and a position sensor. The light source provides light for illuminating the ROI, displaying an image, providing a therapy, and / or performing other functions. The cantilever comprises a resin waveguide with a fixed end attached to a substrate that supports many or all other components. A free end of the cantilever is released from the substrate during fabrication and includes the lens. The actuator scans the free end in orthogonal directions to illuminate the ROI or display an image. The position sensors detect the position of the free end for control. The light detector receives light backscattered from the ROI separate from, or at the fixed end the cantilever.
Owner:UNIV OF WASHINGTON +1

Optical scanning device, optical writing device, and image forming apparatus

An optical scanning device includes a first optical system for guiding light beams emitted from a plurality of light emitting units to an optical deflector, and a second optical system for focusing the light beams to optically scan a surface to be scanned. At least one of the first optical system and the second optical system includes a resin lens having a diffractive surface. The diffractive surface includes a diffractive portion and a refractive portion. A power of the diffractive portion and a power of the refractive portion cancel each other.
Owner:RICOH KK

Orthodontic Treatment Integrating Optical Scanning and CT Scan Data

InactiveUS20120214121A1Avoid periodontal defectAvoids periodontal defectsOthrodonticsDental toolsAnatomic SiteUnerupted dentition
A process for creating a dental model to avoid periodontal defects during planned dental work includes obtaining CT scan data and optical scan data of a patient's dentition and integrating the CT scan data and the optical scan data by at least one of surface to surface registration, registration of radiographic markers, and registration of optical markers of known dimensions, to produce a dental model that includes the dentition and underlying bone and root structures. The process then segments anatomic sites of the tooth roots and underlying bone. A plan for the dental work is then generated based on the segmented anatomic sites, whereby the plan avoids periodontal defects based on the knowledge of the anatomic sites of the roots and underlying cortical bones in the dental model.
Owner:GREENBERG SURGICAL TECH

Computer system for optical scanning, storage, organization, authentication and electronic transmitting and receiving of medical records and patient information, and other sensitive legal documents

The invention disclosed herein relates to an improved method and system for the optically scanning, storage, management, retrieval and electronic mailing of a persons medical records and identification information on a 24 hour a day basis, primarily for use in a medical emergency of other medical scenario. The invention disclosed also encompasses unique and novel methods of verifying the authenticity of original medical records via a unique physicians digital signature embedded into the documents, a means for standardizing and prioritizing the history and prior medical records of a patient so as to provide an edited or abbreviated medical chart for emergencies which is current and clinically significant, a means of encrypting medical records for security, and a means of providing a unique alpha numerical identified code for each patient and digitally embedding the identifier into said patient records within the system and a means of 24 hour a day electronic access, transmission and updating of said records using a unique telephone exchange system, Internet, wesbite Intranet or other appropriate electronic or wireless means.
Owner:MED DATANET

Digital watermarking apparatus and methods

The present invention relates to digital watermarking methods and systems. In one embodiment, a handheld device displays a digitally watermarked image at an event center. An optical scanner captures optical scan data representing the device display. A watermark decoder analyzes the captured optical scan data to obtain the watermark. The watermark is used to determine authorized entry. The handheld device may include a cell phone or other portable computing device.
Owner:DIGIMARC CORP (FORMERLY DMRC CORP)

Methods Circuits Devices Assemblies Systems and Functionally Associated Machine Executable Code for Active Optical Scanning of a Scene

Disclosed is a scanning device including: a photonic emitter assembly (PTX) to emit at least one pulse of inspection photons in accordance with at least one adjustable pulse parameter, a photonic reception and detection assembly (PRX) to receive reflected photons reflected back from an object, the PRX including a detector to detect in accordance with at least one adjustable detection parameter the reflected photons and produce a detected scene signal, and a closed loop controller to: (a) control the PTX and PRX, (b) receive the detected scene signal from the detector and (c) update said at least one pulse parameter and at least one detection parameter at least partially based on a work plan derived at least partially from the detected scene signal.
Owner:INNOVIZ TECH LTD

Stent coating device

The present invention is a method and device, which is suitable for use in an operating theater just prior to implantation, for selectively applying a medical coating to an implantable medical device, for example a stent. Disclosed is a device for use with a stent deployed on a catheter balloon. The device is configured to apply a medical coating of a desired thickness to the surface of a stent only. This is done by use of a drop-on-demand inkjet printing system in association with an optical scanning device. The device is further configured so as to, if necessary, apply a plurality of layered coats, each layered coat being of a different coating material, and if appropriate, different thickness. The section of the housing in which the stent is held during the coating procedure is detachable from the housing base. The detachable housing section may be easily cleaned and re-sterilized or simply disposed or simply disposed of.
Owner:BOSTON SCI SCIMED INC +1

Document imaging and indexing system

A document digitizing method digitizes and automatically indexes documents in printed form. The method includes optically scanning the document, forming and storing a digitized image file from the optically scanned document, optically recognizing characters in the optically scanned document, and forming and storing a text file of the optically recognized characters in document. A retrieval method for retrieving the digitized image file for a document includes searching the text files to identify any having a selected text string and providing access to the digitized image files that correspond to those text files. The digital image file and the text file together represent a digitized document data structure that combines a digital image of a document with a text file of optically recognized characters in the digital image.
Owner:MICROSOFT TECH LICENSING LLC

Ultrasonic imaging device

Various embodiments of the present invention include systems and methods for multimodal functional imaging based upon photoacoustic and laser optical scanning microscopy. In particular, at least one embodiment of the present invention utilizes a contact lens in combination with an ultrasound transducer for purposes of acquiring photoacoustic microscopy data. Traditionally divergent imaging modalities such as confocal scanning laser opthalmoscopy and photoacoustic microscopy are combined within a single laser system. Functional imaging of biological samples can be utilized for various medical and biological purposes.
Owner:UMW RES FOUND INC +1

Method and system of anatomy modeling for dental implant treatment planning

This invention introduces an oral-dental anatomy modeling method and an implant treatment planning system based on a full anatomy model (FAM). Dental Implant Treatment Planning systems place implants on 2D slices of DICOM files, and sometimes on 3D models of bones and remaining teeth. Because the final look and feel of implants and restorations depend on how well they go along with the remaining teeth and soft tissues, treatment planning without tissue model presents safety and aesthetics risks. A FAM consists of models for bones, teeth, soft tissues and nerves. They are created from CT and optical scans, and assembled together with model registration techniques. The tissue model is the real differentiator. A treatment planning system uses FAM as a unique reference throughout the workflow. Its implant placement, restoration preview and surgical guide design are all based on FAM.
Owner:GUIDEMIA TECH

System for vending products and services using an identification card and associated methods

Disclosed is a highly integrated and flexible system for vending products and services to consumers. The system receives information in advance of the vend by having the consumer insert an identification (ID) card, preferably a driver's license, into a point-of-purchase terminal (referred to as an OSU device). The OSU device preferably contains an Optical Scanning Unit (OSU), capable of scanning the textual information on the ID card. In one embodiment, the scanned information is compared against optical templates present in the system to discern or verify the information on the ID card, and is then used by the system to enable or disable the vending transaction, and / or to allow access to several preregistered system accounts.
Owner:METCALF JONATHAN H +5
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products