Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1006 results about "Beam steering" patented technology

Beam steering (also spelled beamsteering or beam-steering) is about changing the direction of the main lobe of a radiation pattern. In radio and radar systems, beam steering may be accomplished by switching the antenna elements or by changing the relative phases of the RF signals driving the elements.

Method and apparatus for preamble training in a multiple antenna communication system

Methods and apparatus are provided for communicating data in a multiple antenna communication system having N transmit antennas. According to one aspect of the invention, a header format includes a legacy preamble having at least one legacy long training field and an extended portion having at least N additional long training fields on each of the N transmit antennas. The N additional long training fields may be tone interleaved across the N transmit antennas and are used for MIMO channel estimation. The extended portion may include a short training field for power estimation. The short training field may be tone interleaved across the N transmit antennas and have an extended duration to support beam steering.
Owner:AVAGO TECH INT SALES PTE LTD

Beam steering devices including stacked liquid crystal polarization gratings and related methods of operation

A beam steering apparatus includes a first beam steering stage and at least a second beam steering stage arranged in-line with the first beam steering stage. The first beam steering stage includes a first polarization grating comprising a uniaxial birefringent material having a first periodic director pattern, and the second beam steering stage includes a second polarization grating comprising a uniaxial birefringent material having a second periodic director pattern. In nonmechanical embodiments, a polarization selector may be arranged to provide a circularly polarized input beam incident on the first polarization grating. In mechanical embodiments, at least one of the first polarization grating and the second polarization grating may be operable to be independently rotated about an azimuth thereof. Related methods of operation are also discussed.
Owner:NORTH CAROLINA STATE UNIV +1

Lens antenna with electronic beam steering capabilities

The invention discloses a lens antenna with high directivity intended for use in radio-relay communication systems, said antenna providing the capability of electronic steering of the main radiation pattern beam by switching between horn antenna elements placed on a plane focal surface of the lens. Electronic beam steering allows antenna to automatically adjust the beam direction during initial alignment of transmitting and receiving antennas and in case of small antenna orientation changes observed due to the influence of different reasons (wind, vibrations, compression and / or extension of portions of the supporting structures with the temperature changes, etc.). The technical result of the invention is the increase of the antenna directivity with simultaneously provided capability of scanning the beam in a continuous angle range and also the increase of the antenna radiation efficiency and, consequently, the increase of the lens antenna gain. This result is achieved by the implementation of horn antenna elements with optimized geometry.
Owner:OBSHCHESTVO S OGRANICHENNOJ OTVETSTVENNOSTYU RADIO GIGABIT

Electronically Beam-Steerable Antenna Device

An electronically beam-steerable antenna device comprises a dielectric lens having at least one flat surface, a high frequency dielectric board, a plurality of at least one primary antenna element with at least one transmission line formed on the high frequency dielectric board, and a switching network electrically connected to the said plurality of at least one primary antenna element and at least one transmission line and adapted to apply electric power to the at least one primary antenna element. The switching network is a semiconductor integrated circuit mounted in or on the high frequency dielectric board, and the high frequency dielectric board with the plurality of at least one antenna element and at least one transmission line formed thereon is adjacent to the flat surface of the dielectric lens.The electronically beam steerable antenna device according to the present invention allows for electronic beam steering in a continuous angle sector while increasing radiation efficiency. The antenna device according to the present invention may be used for providing high data rate point-to-point millimeter-wave communications in radio relay station applications.
Owner:RADIO GIGABIT

Electronic beam steering for keyhole avoidance

An airborne radio frequency (RF) antenna terminal system includes a two-axis gimbals control system and a phased array antenna. The phased array antenna electronically steers the receive and transmit beams using phase shifters. The electronically steered beams provide a virtual third-axis for the two-axis gimbals control system. The combination of the electronically steered beams and the two-axis gimbaled system provides accurate beam steering for the keyhole region of the two-axis gimbals control system so that the RF communication link is prevented from being lost in the keyhole region.
Owner:THE BOEING CO

Silicon-based transducer for use in hearing instruments and listening devices

A silicon-based transducer assembly coupled to a movable structure in a hearing instrument. The transducer assembly includes at least one microphone chip and an ASIC having multiple integrated components such as any combination of a DSP, an A / D converter, an amplifier, a filter, or a wireless interface. The movable structure may be a battery access door, a volume dial, a switch, or a touch pad. A protection strip can be disposed across the battery access door to prevent debris from clogging the silicon-based transducer assembly. The transducer assembly may also include an array of microphone chips to achieve adaptive beam steering or directionality. When equipped with a wireless interface, the hearing instrument wirelessly communicates with another hearing instrument or with a network.
Owner:TDK CORPARATION

Steering laser treatment system and method of use

A system and method for delivering therapeutic laser energy onto selected treatment locations of the retina following a predetermined spatial distribution pattern using one single laser beam. A beam steering mechanism and control system delivers the laser energy sequentially to treatment locations forming a pre-selected treatment layout pattern. The invention allows time consuming therapeutic laser procedures such as pan-retinal photo-coagulation and segmental photocoagulation to be performed with increased accuracy and in a fraction of the time currently required for such procedures.
Owner:MOTOROLA MOBILITY LLC

Adaptive beam forming antenna system using a tunable impedance surface

ActiveUS20040263408A1AntennasResonanceBeam steering
A method of and apparatus for beam steering. A feed horn is arranged so that the feed horn illuminates a tunable impedance surface comprising a plurality of individually tunable resonator cells, each resonator element having a reactance tunable by a tuning element associated therewith. The tuning elements associated with the tunable impedance surface are adjusted so that the resonances of the individually tunable resonator cells are varied in a sequence and the resonances of the individually tunable resonator cells are set to values which improve transmission of information via the tunable impedance surface and the feed horn.
Owner:HRL LAB

Virtual and augmented reality systems and methods

Methods of manufacturing a liquid crystal device including depositing a layer of liquid crystal material on a substrate and imprinting a pattern on the layer of liquid crystal material using an imprint template are disclosed. The liquid crystal material can be jet deposited. The imprint template can include surface relief features, Pancharatnam-Berry Phase Effect (PBPE) structures or diffractive structures. The liquid crystal device manufactured by the methods described herein can be used to manipulate light, such as for beam steering, wavefront shaping, separating wavelengths and / or polarizations, and combining different wavelengths and / or polarizations.
Owner:MAGIC LEAP

Electro-mechanical scanned array system and method

An antenna system includes a beamformer having a feed port and a one-dimensional or two-dimensional arrangement of output ports, radiating antenna elements coupled with output ports of the beamformer, and an antenna control unit coupled with the beamformer to steer a beam of the antenna system. The antenna system forms an electrically steerable, phased array antenna having a beam steering angle which is constant over a very broad band of frequencies. Specific applications for the antenna system include satellite communications including tracking low earth orbiting satellites, radar systems and data links using a steerable antenna for self-installation, self-healing and adaptation.
Owner:E TENNA CORP

Adaptive beam-steering methods to maximize wireless link budget and reduce delay-spread using multiple transmit and receive antennas

A method and apparatus for adaptive beam-steering are disclosed. In one embodiment, the method comprises performing adaptive beam steering using multiple transmit and receive antennas, including iteratively performing a pair of training sequences, wherein the pair of training sequences includes estimating a transmitter antenna-array weight vector and a receiver antenna-array weight vector.
Owner:QUALCOMM INC

2D SCANNING HIGH PRECISION LiDAR USING COMBINATION OF ROTATING CONCAVE MIRROR AND BEAM STEERING DEVICES

The present disclosure describes a system and method for coaxial LiDAR scanning. The system includes a first light source configured to provide first light pulses. The system also includes one or more beam steering apparatuses optically coupled to the first light source. Each beam steering apparatus comprises a rotatable concave reflector and a light beam steering device disposed at least partially within the rotatable concave reflector. The combination of the light beam steering device and the rotatable concave reflector, when moving with respect to each other, steers the one or more first light pulses both vertically and horizontally to illuminate an object within a field-of-view; obtain one or more first returning light pulses, the one or more first returning light pulses being generated based on the steered first light pulses illuminating an object within the field-of-view, and redirects the one or more first returning light pulses.
Owner:INNOVUSION INC

Visible/near infrared image sensor

A MOS or CMOS sensor for high performance imaging in broad spectral ranges including portions of the infrared spectral band. These broad spectral ranges may also include portions or all of the visible spectrum, therefore the sensor has both daylight and night vision capabilities. The sensor includes a continuous multi-layer photodiode structure on a many pixel MOS or CMOS readout array where the photodiode structure is chosen to include responses in the near infrared spectral ranges. A preferred embodiment incorporates a microcrystalline copper indium diselenide / cadmium sulfide photodiode structure on a CMOS readout array. An alternate preferred embodiment incorporates a microcrystalline silicon germanium photodiode structure on a CMOS readout array. Each of these embodiments provides night vision with image performance that greatly surpasses the GEN III night vision technology in terms of enhanced sensitivity, pixel size and pixel count. Further advantages of the invention include low electrical bias voltages, low power consumption, compact packaging, and radiation hardness. In special preferred embodiments CMOS stitching technology is used to provide multi-million pixel focal plane array sensors. One embodiments of the invention made without stitching is a two-million pixel sensor. Other preferred embodiments available using stitching techniques include sensors with 250 million (or more) pixels fabricated on a single wafer. A particular application of these very high pixel count sensors is as a focal plane array for a rapid beam steering telescope in a low earth orbit satellite useful for tracking over a 1500-meter wide track with a resolution of 0.3 meter.
Owner:C PHOCUS

Concentric tilted double-helix dipoles and higher-order multipole magnets

Concentric tilted double-helix magnets, which embody a simplified design and construction method for production of magnets with very pure field content, are disclosed. The disclosed embodiment of the concentric tilted double-helix dipole magnet has the field quality required for use in accelerator beam steering applications, i.e., higher-order multipoles are reduced to a negligibly small level. Magnets with higher multipole fields can be obtained by using a simple modification of the coil winding procedure. The double-helix coil design is well-suited for winding with superconducting cable or cable-in-conduit conductors and thus is useful for applications that require fields in excess of 2 T. The coil configuration has significant advantages over conventional racetrack coils for accelerators, electrical machinery, and magneto-hydrodynamic thrusting devices.
Owner:GOODZEIT CARL L +2

Smart antenna array over fiber

A smart antenna system includes a plurality of antennas, a plurality of Transmit—Receive Modules (TRMs) coupled respectively to the plurality of antennas, and a beam steering module coupled to the plurality of TRMs and providing radiation beam steering for the plurality of TRMs. The beam steering module includes a pilot generator for generating a pilot signal and providing it to the TRMs to calibrate a receive (RX) reference plane. The pilot signal is injected at a first location before the receiver section into the RX path, and the pilot signal is sampled at a second location after the receiver section. The TRMs and the beam steering module can also be used to calibrate a transmit (TX) reference plane by sampling output signals from the TRMs. The output signals have a pilot signal component, and are sampled at the first location in the TX path after the transmitter section.
Owner:POWERWAVE TECH INC

Agile-beam laser array transmitter

An Agile-Beam Laser Array Transmitter (ABLAT) uses an array of emitters and an array of lenses to project electromagnetic beams over a wide angular coverage area in the far field. Differences in the separation pitches of the two arrays allows the ABLAT to project beams to contiguous and / or overlapping positions, depending on the ratio of the separation pitches and the lens focal length. Compared to other beam steering technology, the ABLAT is a smaller, lighter, and more efficient means of projecting beams over wider angular coverage areas. Various embodiments can be used in any beam steering application, including, but not limited to: free-space optical communications; light detection and ranging (lidar); optical scanning (e.g., retinal or bar-code scanning); display projection; image capture; optical character recognition; scanning laser microscopy; non-destructive testing; printing; facsimiles; map making; web inspection; color print processing; phototypesetting and platemaking; laser marking; material processing; DNA analysis; and drug discovery.
Owner:MASSACHUSETTS INST OF TECH

Fixed-frequency beam-steerable leaky-wave microstrip antenna

A fixed frequency continuously beam-steerable leaky-wave antenna in microstrip is disclosed. The antenna's radiating strips are loaded with identical shunt-mounted variable-reactance elements, resulting in low reverse-bias-voltage requirements. By varying the reverse-bias voltage across the variable-reactance elements, the main beam of the antenna may be scanned continuously at fixed frequency. The antenna may consist of an array of radiating strips, wherein each strip includes a variable-reactance element. Changing the element's reactance value has a similar effect as changing the length of the radiating strips. This is accompanied by a change in the phase velocity of the electromagnetic wave traveling along the antenna, and results in continuous fixed-frequency main-beam steering. Alternatively, the antenna may consist of two long radiating strips separated by a small gap, wherein identical variable-reactance elements are mounted in shunt across the gap at regular intervals. A continuous change in the reactance value has a similar effect as changing continuously the width of the radiating strips. This results in a continuous change in the phase velocity of the electromagnetic wave traveling along the antenna, thereby achieving continuous fixed-frequency main-beam steering.
Owner:ANRITSU CO

Systems and methods implementing frequency-steered acoustic arrays for 2D and 3D imaging

Frequency-steered acoustic arrays transmitting and / or receiving multiple, angularly dispersed acoustic beams are used to generate 2D and 3D images. Input pulses to the arrays are generally non-linear, frequency-modulated pulses. Frequency-steered acoustic arrays may be provided in one-dimensional linear and two dimensional planar and curvilinear configurations, may be operated as single order or multiple order arrays, may employ periodic or non-periodic transducer element spacing, and may be mechanically scanned to generate 2D and 3D volumetric data. Multiple imaging fields of view may generated in different directions by switching the polarity of phase-shifted array transducer elements. Multiple frequency-steered arrays arranged in an X-configuration provide a wide, contiguous field of view and multiple frequency steered arrays arranged in a T-configuration provide orthogonally oriented fields of view. Methods and systems for operating acoustic arrays in a frequency-steered mode in combination a mechanical beam steering mode, electronic time-delay and phase shift beam forming modes, and phase comparison angle estimation modes are also provided.
Owner:TELEDYNE RESON

Fixed-frequency beam-steerable leaky-wave microstrip antenna

A fixed frequency continuously beam-steerable leaky-wave antenna in microstrip is disclosed. The antenna's radiating strips are loaded with identical shunt-mounted variable-reactance elements, resulting in low reverse-bias-voltage requirements. By varying the reverse-bias voltage across the variable-reactance elements, the main beam of the antenna may be scanned continuously at fixed frequency. The antenna may consist of an array of radiating strips, wherein each strip includes a variable-reactance element. Changing the element's reactance value has a similar effect as changing the length of the radiating strips. This is accompanied by a change in the phase velocity of the electromagnetic wave traveling along the antenna, and results in continuous fixed-frequency main-beam steering. Alternatively, the antenna may consist of two long radiating strips separated by a small gap, wherein identical variable-reactance elements are mounted in shunt across the gap at regular intervals. A continuous change in the reactance value has a similar effect as changing continuously the width of the radiating strips. This results in a continuous change in the phase velocity of the electromagnetic wave traveling along the antenna, thereby achieving continuous fixed-frequency main-beam steering.
Owner:ANRITSU CO

Head-wearable display with collimated light source and beam steering mechanism

A head-wearable display includes a collimated light source, a beam steering mechanism, and a synchronization controller. The collimated light source selectively emits collimated light. The beam steering mechanism is optically coupled to receive the collimated light and angularly scans the collimated light between beam steering states that each redirect the collimate light to a different angular direction along at least one angular dimension. The beam steering mechanism is coupled to scan the collimated light across an eyebox. The synchronization controller is coupled to the collimated light source and the beam steering mechanism to synchronize selective emission of the collimated light from the collimated light source with the beam steering states of the beam steering mechanism to repetitiously draw an image in the eyebox.
Owner:GOOGLE LLC

Sensor Element and System Comprising Wide Field-of-View 3-D Imaging LIDAR

A LIDAR sensor element and system for wide field-of-view applications such as autonomous UAS landing site selection is disclosed. The sensor element and system have an imaging source such as a SWIR laser for imaging a field of regard or target with a beam having a predefined wavelength. The beam is scanned over the field of regard or target with a beam steering device such as Risley prism. The reflected beam is captured by the system by receiving optics which may comprise a Risley prism for receiving and imaging the reflected beam upon a photodetector array such as a focal plane array. The focal plane array may be bonded to and a part of a three-dimensional stack of integrated circuits, a plurality of which may comprise one or more read out integrated circuits.
Owner:PFG IP +1

Adaptive beam-steering methods to maximize wireless link budget and reduce delay-spread using multiple transmit and receive antennas

A method and apparatus for adaptive beam-steering are disclosed. In one embodiment, the method comprises performing adaptive beam steering using multiple transmit and receive antennas, including iteratively performing a pair of training sequences, wherein the pair of training sequences includes estimating a transmitter antenna-array weight vector and a receiver antenna-array weight vector.
Owner:QUALCOMM INC

System and method for ultra wideband subarray beam steering

An active protection system comprising an ultra wideband (UWB) radar for threat detection, an optical tracker for precision threat position measurement, and a high powered laser for threat kill or mitigation. The UWB radar may use a sparse array antenna and may also utilize Doppler radar information. The high powered laser may be of the optically pumped solid state type and in one embodiment may share optics with the optical tracker. In one embodiment, the UWB radar is used to focus the high power laser. Alternative interceptor type kill mechanisms are disclosed. In a further embodiment, the kill mechanism may be directed to the source of the threat. In a further embodiment, an antenna array is steered by using subarray groups having fixed timing within the group and variable timing from group to group.
Owner:TIME DOMAIN

Head up display system

InactiveUS20120139817A1Minimise change in aberrationCathode-ray tube indicatorsOptical elementsHead-up displayExit pupil
A head up display apparatus is disclosed for projecting an image upon a screen. The apparatus comprises a signal processing system, comprising an image projector for projecting an image to a partially reflective screen, the screen being configured substantially in front of an eye of a user of the display apparatus. The apparatus further comprises a beam steering arrangement for steering the projected image substantially at an exit pupil of the system, upon the screen, and a pupil tracking arrangement for tracking a pupil of the users eye such that the projected image remains directed at the pupil of the user as the user adjusts their line of sight.
Owner:BAE SYSTEMS PLC

Systems and methods for automatic target tracking and beam steering

An automatic target tracking system and method employ an image capturing system for acquiring a series of images in real time of a distant area containing a remote target, and a processing system for processing the acquired images to identify the target and follow its position across the series of images. An automatic beam steering and method operate in conjunction with a laser source for emitting a laser beam to be transmitted in the form of a transmitted laser beam extending along a steerable beam transmission axis to the remote target. The beam steering system is controlled by the processing system to steer the beam transmission axis to be aimed at the target being tracked by the target tracking system, so that the transmitted laser beam will be transmitted at the appropriate angle and in the appropriate direction to be aimed at the tracked target.
Owner:INTELLIGENT AUTOMATION LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products