Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3022 results about "Retina" patented technology

The retina is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs. The optics of the eye create a focused two-dimensional image of the visual world on the retina, which translates that image into electrical neural impulses to the brain to create visual perception, the retina serving a function analogous to that of the film or image sensor in a camera.

Surgical correction of human eye refractive errors by active composite artificial muscle implants

Surgical correction of human eye refractive errors such as presbyopia, hyperopia, myopia, and stigmatism by using transcutaneously inductively energized artificial muscle implants to either actively change the axial length and the anterior curvatures of the eye globe. This brings the retina / macula region to coincide with the focal point. The implants use transcutaneously inductively energized scleral constrictor bands equipped with composite artificial muscle structures. The implants can induce enough accommodation of a few diopters, to correct presbyopia, hyperopia, and myopia on demand. In the preferred embodiment, the implant comprises an active sphinctering smart band to encircle the sclera, preferably implanted under the conjunctiva and under the extraocular muscles to uniformly constrict the eye globe, similar to a scleral buckle band for surgical correction of retinal detachment, to induce active temporary myopia (hyperopia) by increasing (decreasing) the active length of the globe. In another embodiment, multiple and specially designed constrictor bands can be used to enable surgeons to correct stigmatism. The composite artificial muscles are either resilient composite shaped memory alloy-silicone rubber implants in the form of endless active scleral bands, electroactive ionic polymeric artificial muscle structures, electrochemically contractile endless bands of ionic polymers such as polyacrylonitrile (PAN), thermally contractile liquid crystal elastomer artificial muscle structures, magnetically deployable structures or solenoids or other deployable structures equipped with smart materials such as preferably piezocerams, piezopolymers, electroactive and eletrostrictive polymers, magnetostrictive materials, and electro or magnetorheological materials.
Owner:ENVIRONMENTAL ROBOTS

Ophthalmic instrument with adaptive optic subsystem that measures aberrations (including higher order aberrations) of a human eye and that provides a view of compensation of such aberrations to the human eye

An improved ophthalmic instrument for in-vivo examination of a human eye including a wavefront sensor that estimates aberrations in reflections of the light formed as an image on the retina of the human eye and a phase compensator that spatially modulates the phase of incident light to compensate for the aberrations estimated by the wavefront sensor Optical elements create an image of a fixation target at the phase compensator, which produces a compensated image of the fixation target that compensates for aberrations estimated by the wavefront sensor. The compensated image of the fixation target produced by the phase compensator is recreated at the human eye to thereby provide the human eye with a view of compensation of the aberrations the human eye as estimated by the wavefront sensor. The phase compensator preferably comprises a variable focus lens that compensates for focusing errors and a deformable mirror that compensates for higher order aberrations. The optical elements preferably comprise a plurality of beam splitters and a plurality of lens groups each functioning as an afocal telescope. In addition, instruments and systems are provided that exploit these capabilities to enable efficient prescription and / or dispensing of corrective optics (e.g., contact lens and glasses).
Owner:NORTHROP GRUMMAN SYST CORP +1

Attention mechanism-based in-depth learning diabetic retinopathy classification method

The invention discloses an attention mechanism-based in-depth learning diabetic retinopathy classification method comprising the following steps: a series of eye ground images are chosen as original data samples which are then subjected to normalization preprocessing operation, the preprocessed original data samples are divided into a training set and a testing set after being cut, a main neutralnetwork is subjected to parameter initializing and fine tuning operation, images of the training set are input into the main neutral network and then are trained, and a characteristic graph is generated; parameters of the main neutral network are fixed, the images of the training set are adopted for training an attention network, pathology candidate zone degree graphs are output and normalized, anattention graph is obtained, an attention mechanism is obtained after the attention graph is multiplied by the characteristic graph, an obtained result of the attention mechanism is input into the main neutral network, the images of the training set are adopted for training operation, and finally a diabetic retinopathy grade classification model is obtained. Via the method disclosed in the invention, the attention mechanism is introduced, a diabetic retinopathy zone data set is used for training the same, and information characteristics of a retinopathy zone is enhanced while original networkcharacteristics are reserved.
Owner:NANJING UNIV OF AERONAUTICS & ASTRONAUTICS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products