Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

322 results about "Small antenna" patented technology

Apparatus and method utilizing magnetic field

Apparatus and method for harvesting energy from the environment and / or other external sources and converting it to useful electrical energy. The harvester does not contain a permanent magnet or other local field source but instead relies on the earth's magnetic field of another source of a magnetic field that is external to the sensing device. One advantage of these new harvesters is that they can be made smaller and lighter than energy harvesters that contain a magnet and / or an inertial mass. A small implantable stimulator(s) includes at least one passive magnetostrictive / electro-active (PME) magnetic-field sensor for delivering electrical stimulation to surrounding tissue. The PME is charged utilizing a changing magnetic field from an external alternating magnetic field source at a frequency particular to the PME. The small stimulator provides means of stimulating a nerve, tissue or internal organ with direct electrical current, such as relatively low-level direct current for temporary or as needed therapy. The field source may be a hand-held device or a small antenna affixed to the wearer's skin, clothing or accessories. The stimulator may be configured to be small enough to be implanted through a surgical needle. Open- and closed-loop systems are disclosed with measurement of current flow and therapy through PME sensor function.
Owner:FERRO SOLUTIONS

Multibeam Antenna System

Embodiments of the invention relate to beamforming antennas such as can be used in space division multiplexing systems. Space division multiplexing can be used to increase data capacity in wireless networks by enabling different base stations to transmit signals within the same frequency band. Each antenna beam can potentially be used to establish a communication link within an area of wireless coverage, and other communication links established on other antenna beams then represent interference to that user. In order to reduce interference, narrow beamwidths are desirable. These are typically achieved by increasing the aperture of the antenna in the azimuth plane, and in arrangements that require finely divided angular sectors, a greater number of antennas will be required to give three hundred and sixty degree coverage. As a result, there is potentially a large increase in the total surface area of antennas which is undesirable, as it leads to increased wind loading of an antenna tower. Embodiments of the invention provide an arrangement in which data are transmitted from a first transmitter to a first receiver using a first antenna beam, and data are transmitted from a second transmitter to a second receiver using a second antenna beam. The first antenna beam is formed by splitting the signal from the first transmitter into two parts with a first phase relationship between the parts, each part being connected to an antenna. A second antenna beam is formed by splitting the signal from the second transmitter into two parts with a second phase relationship between the parts, each part being connected to one of the two antennas. An advantage of embodiments of the invention is that data can be transmitted from different transmitters at the same frequency without interference, while presenting a smaller antenna aperture than is required with conventional systems.
Owner:APPLE INC

A passive wireless surface acoustic wave torque sensor with temperature and vibration self-compensation

InactiveCN102288339AReduce volumeRealize wireless transmission and receptionWork measurementTorque measurementEngineeringSurface acoustic wave resonators
The invention relates to a sensor suitable for passive wireless measurement of torque. The sensor has temperature and vibration compensation functions. The passive wireless torque sensor of the present invention includes four surface acoustic wave resonators with different center frequencies, a small antenna and an elastic shaft of the sensor. The surface acoustic wave resonator of this sensor uses quartz as the substrate of the resonator. The interdigital transducer and reflection grid are deposited on the substrate, and the piezoelectric effect and inverse piezoelectric effect are used to excite and receive the surface acoustic wave. The four surface acoustic wave resonators of the torque sensor are pasted on the elastic shaft according to the design angle. When torque is applied to the elastic shaft, the four surface acoustic wave resonators can respectively detect the deformation in the pasting direction. The four deformations can be obtained by processing the temperature , Torque information after vibration compensation. The four surface acoustic wave resonators are connected with the antenna, which can realize the wireless transmission of force state information. The invention has the advantages of simple structure, small size, light weight, high precision, passive wireless, and is suitable for passive wireless measurement of torque of important shaft parts such as aerospace, transmission machinery, precision machine tools, and heavy vehicles.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Antenna module and electronic equipment

The invention discloses an antenna module and electronic equipment. The antenna module comprises an insulating shell, a metal frame, a feed point, multiple electric connecting pieces, multiple adjustable assemblies and a first connecting section, wherein each electric connecting piece is grounded through the corresponding adjustable assembly; the feed point reaches a first connecting point through a second connecting point, and the feed point and at least two electric connecting pieces which are electrically connected to the first connecting point reach a second end through the first connecting point, so that an IFA antenna is formed; the feed point reaches the at least two electric connecting pieces which are electrically connected to a third connecting point through the second connecting point and a gap between the first end and a second frame body, so that an annular antenna is formed; and the feed point and the first connecting section form a monopole antenna. By adoption of the technical scheme of the antenna module and the electronic equipment, it is ensured that wide frequency band communication can be realized through relatively small antenna structure, so that the requirement on the smaller and smaller dimensions of the antenna can be more satisfied.
Owner:BEIJING XIAOMI MOBILE SOFTWARE CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products