Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1457results about How to "Improve radiation efficiency" patented technology

Lens antenna with electronic beam steering capabilities

The invention discloses a lens antenna with high directivity intended for use in radio-relay communication systems, said antenna providing the capability of electronic steering of the main radiation pattern beam by switching between horn antenna elements placed on a plane focal surface of the lens. Electronic beam steering allows antenna to automatically adjust the beam direction during initial alignment of transmitting and receiving antennas and in case of small antenna orientation changes observed due to the influence of different reasons (wind, vibrations, compression and / or extension of portions of the supporting structures with the temperature changes, etc.). The technical result of the invention is the increase of the antenna directivity with simultaneously provided capability of scanning the beam in a continuous angle range and also the increase of the antenna radiation efficiency and, consequently, the increase of the lens antenna gain. This result is achieved by the implementation of horn antenna elements with optimized geometry.
Owner:OBSHCHESTVO S OGRANICHENNOJ OTVETSTVENNOSTYU RADIO GIGABIT

Circular polarized helical radiation element and its array antenna operable in TX/RX band

Provided are Circular Polarized Helical Radiation element and its Array Antenna operable in TX band and RX band. The circular polarized helical radiation element and its array antenna and the antenna with double reflection boards using that array can operate at TX / RX dual band which is high frequency such as Ka band by operating the helical antenna in axial mode and implementing dual feeding structure. The array antenna having a number of radiation elements operable in the both of TX band and RX band, wherein the radiation elements are arrayed on predetermined column lines, each radiation element comprising: a helix for radiating orthogonal circular polarized waves in the different frequency bands wherein the helix is fed at its beginning point and its terminating point; and a wave guide for accommodating the helix.
Owner:ELECTRONICS & TELECOMM RES INST

Antenna having a reflector for improved efficiency, gain, and directivity

An antenna having at least one reflector for improving radiation efficiency, gain, and directivity is disclosed. The antenna may be formed on a substrate or be a standalone conductive material that is designed to operate in at least one band of frequency. The antenna includes a reflector for each band of frequency the antenna is designed to operate in. The reflector is positioned relative to the antenna to redirect electromagnetic radiation of the antenna away from surrounding materials or objects that affect, i.e., reflect, refract, diffract, absorb and scatter the antenna's electromagnetic radiation.
Owner:SANGARAN PRAGASH +1

High power light emitting diode package

The invention relates to a high power LED package, in which a package body is integrally formed with resin to have a recess for receiving an LED chip. A first sheet metal member is electrically connected with the LED chip, supports the LED chip at its upper partial portion in the recess, is surrounded by the package body extending to the side face of the package body, and has a heat transfer section for transferring heat generated from the LED chip to the metal plate of the board and extending downward from the inside of the package body so that a lower end thereof is exposed at a bottom face of the package body thus to contact the board. A second sheet metal member is electrically connected with the LED chip spaced apart from the first sheet metal member for a predetermined gap, and extends through the inside of the package body to the side face of the package body in a direction opposite to the first sheet metal member. A transparent sealant is sealingly filled up into the recess. The LED package raises thermal radiation efficiency with a simplified structure in order to reduce the size and thickness thereof.
Owner:SAMSUNG ELECTRONICS CO LTD

Light emitting element and light emitting device

InactiveUS20050093008A1Improved external radiation efficiencyIncrease external radiation efficiencySolid-state devicesSemiconductor devicesRefractive indexLight emitting device
A light emitting element has: a light emitting layer of semiconductor; and a diffusion layer that has a refractive index equal to or greater than that of the light emitting layer and that diffuses light emitted from the light emitting layer to increase the external radiation efficiency of the light emitting element. The light emitting layer has a refractive index equal to or greater than that of any layers formed between the light emitting layer and the diffusion layer.
Owner:TOYODA GOSEI CO LTD

Light emitting device package and back light unit for liquid crystral display using the same

A light emitting device package and a back light unit for liquid crystal display using the same wherein a fan is used to forcibly cool an LED package and a back light unit for LCD to increase the heat radiation efficiency and to prevent the degradation of the device.
Owner:LG ELECTRONICS INC

Loop antenna with a parasitic radiator

ActiveUS20070182658A1Radiation efficiency be lowBoost performanceAntenna arraysSimultaneous aerial operationsRadio frequencyFrequency band
It is an objective of the present invention to provide an antenna construction that allows the thickness of an antenna structure be lower than that of planar antennas according to prior art without sacrificing the radiation efficiency at the desired RF-bands as 900 MHz GSM and 1800 MHz / 1900 MHz DCS / PCS. A further object of the invention is to provide an antenna construction that is insensitive to changes in positions of electrically conductive objects in the vicinity. The objectives of the invention are achieved by a loop antenna structure equipped with an electrically conductive parasitic radiator that is electro-magnetically coupled with the antenna loop. Performance at the DCS / PCS bands can be further improved by using an electrically conductive tuner element that provides a stronger electromagnetic coupling between the antenna loop and the parasitic radiator.
Owner:NOKIA TECHNOLOGLES OY

Light emitting diode package and fabrication method thereof

An LED package and a fabrication method therefor. The LED package includes first and second lead frames made of heat and electric conductors, each of the lead frames comprising a planar base and extensions extending in opposed directions and upward directions from the base. The package also includes a package body made of a resin and configured to surround the extensions of the first and second lead frames to fix the first and second lead frames while exposing underside surfaces of the first and second lead frames. The LED package further includes a light emitting diode chip disposed on an upper surface of the base of the first lead frame and electrically connected to the bases of the first and second lead frames, and a transparent encapsulant for encapsulating the light emitting diode chip.
Owner:SAMSUNG ELECTRONICS CO LTD

Dual-polarized antenna

ActiveUS20150194730A1Bandwidth in which matching of the antenna can be ensured can be widenedHigh bandwidthSimultaneous aerial operationsRadiating elements structural formsRadiating elementCoplanar lines
In a multilayer substrate (2), an internal ground layer (11) is provided at a position between insulating layers (4) and (5) and a radiating element (13) is provided at a position between insulating layers (3) and (4). A first coplanar line (7) is connected to an intermediate position of the radiating element (13) in an X-axis direction, and a second coplanar line (9) is connected to an intermediate position of the radiating element (13) in a Y-axis direction. A passive element (16) is laminated on the upper surface of the radiating element (13) through the insulating layer (3). The passive element (16) is formed in a cross shape in which a first patch (16A) extending in the X-axis direction and a second patch (16B) extending in the Y-axis direction are orthogonal to each other.
Owner:MURATA MFG CO LTD

Safe and high-brightness LED lamp

A safe and high-brightness LED lamp consists of a lampshade, a bulb mounting base, an LED module and a circuit board. The lampshade and bulb mounting base construct an inner space, which is allowable to store said LED module; the LED module consists of a heat-radiating block, an LED lamp panel and a reflective wall, where such LED lamp panel can be flat nestled up against the heat-radiating block at one end. Moreover, such reflective wall can be coupled with the LED lamp so that the said inner space can be partitioned into one light source refractive space and one flowing space for airflow thereof. Furthermore, an electrical fan is installed outside the heat-radiating block. Thereby, while light is being refracted and diffused via reflective wall into the light source refractive space in lampshade, it will then be refracted and diffused once more, and under this circumstance, not only the light will become more uniform with higher brightness, but also it will improve the heat radiation efficiency, and thus, resulting in a longer service life for such LED lamp while utilizing the said flowing space for airflow to guide the air blown by the fan.
Owner:HUANG YAO HUI +1

Mobile terminal and method and device for switching antennas of mobile terminal

The embodiment of the invention provides a mobile terminal and a method and device for switching antennas of the mobile terminal. The method includes the steps of receiving first signal intensity received by the first antenna on the mobile terminal and second signal intensity received by the second antenna on the mobile terminal, comparing the first signal intensity with the second signal intensity, and controlling the mobile terminal to use the antenna with the high signal intensity. According to the mobile terminal and the method and device for switching the antennas of the mobile terminal, the problems that the mobile terminal is large in power consumption, short in stand-by time and poor in communication quality can be solved.
Owner:XIAOMI INC

Methods of hyperdoping semiconductor materials and hyperdoped semiconductor materials and devices

Methods are disclosed for producing highly doped semiconductor materials. Using the invention, one can achieve doping densities that exceed traditional, established carrier saturation limits without deleterious side effects. Additionally, highly doped semiconductor materials are disclosed, as well as improved electronic and optoelectronic devices / components using said materials. The innovative materials and processes enabled by the invention yield significant performance improvements and / or cost reductions for a wide variety of semiconductor-based microelectronic and optoelectronic devices / systems. Materials are grown in an anion-rich environment, which, in the preferred embodiment, are produced by moderate substrate temperatures during growth in an oxygen-poor environment. The materials exhibit fewer non-radiative recombination centers at higher doping concentrations than prior art materials, and the highly doped state of matter can exhibit a minority carrier lifetime dominated by radiative recombination at higher doping levels and higher majority carrier concentrations than achieved in prior art materials. Important applications enabled by these novel materials include high performance electronic or optoelectronic devices, which can be smaller and faster, yet still capture or emit light efficiently, and high performance electronics, such as transistors, which can be smaller and faster, yet cooler.
Owner:YALE UNIV

Litzendraht loop antenna and associated methods

The antenna includes a Litz wire loop having a plurality of individually insulated wires braided together and a plurality of splices therein to define distributed capacitors. A magnetically coupled feed loop is provided within the electrically conductive loop, and a feed structure, such as a coaxial feed line, feeds the magnetically coupled feed loop.
Owner:HARRIS CORP

Compact PIFA antenna

ActiveUS10205239B1Antenna area can be reducedSuitable impedance bandwidthElectromagnetic wave systemSimultaneous aerial operationsPlanar inverted f antennaEngineering
Various planar inverted-F antenna configurations may include an antenna element formed on the top of a PCB and a ground element formed on the bottom of the PCB. Two or more slots may be included in the antenna element for reducing the antenna area while maintaining a suitable impedance bandwidth. A slot may be included in the ground element for reducing the ground area while increasing radiation efficiency. A folded ground may be formed on the top of the PCB for reducing system area while maintaining suitable performance. By moving the folded ground closer to the antenna element and increasing the PCB thickness, significant reductions in system area may be achieved, while maintaining or improving performance in terms of radiation pattern, radiation efficiency and impedance bandwidth.
Owner:ENERGOUS CORPORATION

Antenna device and wireless communication device

An antenna device includes a feed coil and a sheet conductor. The feed coil includes a magnetic core and a coil-shaped conductor, which is provided around the magnetic core. An RFIC is connected to the feed coil. The sheet conductor has a larger area than the feed coil. A slit that extends from a portion of the edge of the sheet conductor toward the inner side of the sheet conductor is provided in the sheet conductor. The feed coil is arranged such that the direction of the axis around which the feed coil is disposed is parallel or substantially parallel to the directions in which the sheet conductor extends. The feed coil is arranged such that the feed coil is close to the slit and one of coil openings at the ends of the feed coil faces the slit.
Owner:MURATA MFG CO LTD

Orbital angular momentum vortex wave beam generation apparatus and method

The invention discloses an orbital angular momentum vortex wave beam generation apparatus and method. According to the technical scheme, an electromagnetic super-surface structure (3) is formed by M lines and N columns of electromagnetic super-surface reflection units (31) and dielectric substrates (32); a phase-shifting network (4) is formed by the electromagnetic super-surface structure (3) and a metal back plate (2); the metal back plate (2) is positioned on the back surface of the electromagnetic super-surface structure (3), and the metal back plate is also used as an earth plate; a feed source (1) is put in the central axial position of the electromagnetic super-surface structure (3); incident wave from the feed source (1) irradiates on the electromagnetic super-surface structure; and after the incident wave obtains compensated phase position from the electromagnetic super-surface structure, the incident wave is reflected by the phase-shifting network (4) to generate the orbital angular momentum vortex wave beam(5) with an intrinsic mode 1. According to the orbital angular momentum vortex wave beam generation apparatus and method, the problems of complex technical structure, high cost, beam divergence and low efficiency in the prior art are solved; and the apparatus and method can be used for information transmitting and receiving in the communication technology, and the communication capacity can be increased.
Owner:XIDIAN UNIV

Antenna device and electronic device

ActiveCN107039766AGuaranteed Closed Radiation PathsHigh Isolation FeaturesSimultaneous aerial operationsAntenna supports/mountingsCarrier signalHigh isolation
The present invention discloses an antenna device and an electronic device. The antenna device comprises a metal housing with a slit structure, wherein the metal housing is divided into an antenna arm portion and a main area portion; the antenna arm portion comprises a first fracture and a second fracture, and the antenna arm portion is at least divided by the first fracture and the second fracture into: a first antenna arm located between the first fracture and the second fracture, the first antenna arm being separating from the main area portion, a second antenna arm located at the first side of the first antenna arm, the first end and the second end of the second antenna arm being connected with the main area portion, a first matching circuit, one end of the first matching circuit being connected with the first antenna arm through a first metal connection piece, the other end of the first matching circuit being earthed at least through a first feed source; and a second matching circuit, one end of the second matching circuit being connected with the second antenna arm through a second metal connection piece, and the other end thereof being earthed through a second feed source. The antenna device and the electronic device is low in contour and high isolation, satisfy carrier aggregation, and facilitate improving antenna radiation efficiency and partial space multi-antenna design.
Owner:VIVO MOBILE COMM CO LTD

Litzendraht loop antenna and associated methods

ActiveUS20060038730A1Reduced RF skin effectIncreased radiation efficiency and gainLoop antennas with ferromagnetic coreResonant long antennasElectrically conductiveFeed line
The antenna includes a Litz wire loop having a plurality of individually insulated wires braided together and a plurality of splices therein to define distributed capacitors. A magnetically coupled feed loop is provided within the electrically conductive loop, and a feed structure, such as a coaxial feed line, feeds the magnetically coupled feed loop.
Owner:HARRIS CORP

Semiconductor device and method of manufacturing the same

A semiconductor device is provided, which is capable of improving mounting flexibility relatively and increasing general versatility, as well as realizing heat radiation characteristics and low on-resistance. Moreover, the semiconductor device is provided, which is capable of improving reliability, performing processing in manufacturing processes easily and reducing manufacturing costs. Also, the semiconductor device capable of decreasing the mounting area is provided. A semiconductor chip in which an IGBT is formed and a semiconductor chip in which a diode is formed are mounted over a die pad. Then, the semiconductor chip and the semiconductor chip are connected by using a clip. The clip is arranged so as not to overlap with bonding pads formed at the semiconductor chip in a flat state. The bonding pads formed at the semiconductor chip are connected to electrodes by using wires.
Owner:RENESAS ELECTRONICS CORP

High power LED package

A high power LED package, in which substantially planar first and second lead frames made of high reflectivity metal are spaced from each other for a predetermined gap. An LED chip is seated on at least one of the lead frames, and having terminals electrically connected to the lead frames, respectively. A package body made of resin seals the LED chip therein while fixedly securing the lead frame in the bottom thereof. The encapsulant preferably fills up the gap between the first and second lead frames. The LED package is structured to raise thermal radiation efficiency thereby reducing the size and thickness thereof.
Owner:SAMSUNG ELECTRO MECHANICS CO LTD

Projection type video display apparatus

ActiveUS20060082732A1Cool capacity decreaseAvoid decrease in durabilityTelevision system detailsLighting heating/cooling arrangementsEngineeringLight source
There is provided a heat conductive portion for conducting heat generated by an LED light source to cooling liquid at a rear side of each LED light source. Each heat conductive portion is connected one another with a pipe, and the cooling liquid flowing in the pipe is sequentially circulated through each heat conductive portion. A heat generation amount of an LED light source for red light is the smallest, the heat generation amount of an LED light source for green light is the largest, and the heat generation amount of an LED light source for blue light is the middle of the two. The cooling liquid cooled by passing through a radiation fin is firstly supplied to the heat conductive portion for the LED light source for red light, secondly supplied to the heat conductive portion for the LED light source for blue light, and lastly supplied to the heat conductive portion for the LED light source for green light. The cooling liquid discharged from a pump is supplied to the heat conductive portion for the heat conductive portion for the LED light source for green light. Then, the cooling liquid from this heat conductive portion passes through the pipe to be supplied to the radiation fin (radiator).
Owner:SANYO ELECTRIC CO LTD

Photo-semiconductor device and method of manufacturing the same

A photo-semiconductor device comprises a photoconductive semiconductor film provided with electrodes and formed on a second substrate, the semiconductor film being formed by epitaxial growth on a first semiconductor substrate different from the second substrate, the second substrate being also provided with electrodes, the electrodes of the second substrate and the electrodes of the photoconductive semiconductor film being held in contact with each other.
Owner:CANON KK

Load-Line Adaptation

According to the general concept disclosed herein, a circuit for adaptive matching of a load impedance to a predetermined load-line impedance of a load-line connected to a power amplifier output includes a fixed matching network between the power transistor and an adaptive matching network, whereby the fixed matching network acts as an impedance inverter which results in a relatively low insertion loss at high power. Results indicate that the impedance-inverting network can be used over more than a factor of 10 in impedance variation. Further, the usage of the fixed matching network, close to the power transistor, allows for the implementation of transmission zeros and / or for a well defined load impedance at a predetermined harmonic frequency, independent of the (variable) load impedance at the fundamental frequency.
Owner:QUALCOMM TECHNOLOGIES INC

Microcomputer electric stacking type millimeter wave antenna

The invention provides a micro electromechanical cascade millimeter wave antenna, comprising an upper anisotropic substrate, a middle anisotropic substrate and a lower anisotropic substrate. The upper surface deposit of the upper anisotropic substrate is provided with metal and forms a first metal radiation patch by mechanical erosion. The upper surface deposit of the middle anisotropic substrate is provided with metal and forms a second metal radiation patch by mechanical erosion. The upper surface deposit of the lower anisotropic substrate is provided with metal and forms a FGCPW-MS feeder or a MS feeder by mechanical erosion. The upper anisotropic substrate, the middle anisotropic substrate and the lower anisotropic substrate form a unit by MEMS bonding technology. The antenna has small size and light weight, which is also easy for the further integration.
Owner:NO 55 INST CHINA ELECTRONIC SCI & TECHNOLOGYGROUP CO LTD

AOG antenna system and mobile terminal

The invention provides an AOG antenna system and a mobile terminal. The AOG antenna system includes an encapsulation antenna disposed between a main board and a 3D glass rear cover and electrically connected with the main board and a metal antenna formed on a surface of the 3D glass rear cover, the metal antenna includes a first antenna attached to an inner surface of the 3D glass rear cover and asecond antenna attached to an outer surface of the 3D glass rear cover, the first antenna corresponds to a position of an encapsulated antenna and is fed by coupling of the encapsulated antenna, andthe second antenna corresponds to a position of the first antenna and is fed by coupling of the first antenna. Compared with the related art, the AOG antenna system provided by the invention greatly reduces the influence of the 3D glass back cover on the internal encapsulated antenna of the mobile terminal by arranging the metal antenna on the surface of the 3D glass back cover, and has high antenna radiation efficiency, small gain reduction and dual-frequency coverage.
Owner:AAC TECH NANJING
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products