Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2601 results about "Ground layer" patented technology

Ground layer The lowest layer of a plant community, comprising especially mosses, lichens, and fungi, together with low-growing herb species which often have trailing stems or rosette forms. Cite this article.

Simulation gridding method and apparatus including a structured areal gridder adapted for use by a reservoir simulator

A Flogrid Simulation Gridding Program includes a Flogrid structured gridder. The structured gridder includes a structured areal gridder and a block gridder. The structured areal gridder will build an areal grid on an uppermost horizon of an earth formation by performing the following steps: (1) building a boundary enclosing one or more fault intersection lines on the horizon, and building a triangulation that absorbs the boundary and the faults; (2) building a vector field on the triangulation; (3) building a web of control lines and additional lines inside the boundary which have a direction that corresponds to the direction of the vector field on the triangulation, thereby producing an areal grid; and (4) post-processing the areal grid so that the control lines and additional lines are equi-spaced or smoothly distributed. The block gridder of the structured gridder will drop coordinate lines down from the nodes of the areal grid to complete the construction of a three dimensional structured grid. A reservoir simulator will receive the structured grid and generate a set of simulation results which are displayed on a 3D Viewer for observation by a workstation operator.
Owner:SCHLUMBERGER TECH CORP

System and method for extraction of hydrocarbons by in-situ radio frequency heating of carbon bearing geological formations

A method of producing liquid hydrocarbons from a hydrocarbon-bearing rock in situ in a geological formation begins with exploring the formation by drilling a plurality of boreholes into the formation and taking core samples of the hydrocarbon-bearing rock and at least one overburden layer. Electrical parameters of the hydrocarbon-bearing rock and the overburden layer are determined, as well as a roughness of a boundary between the hydrocarbon-bearing rock and the at least one overburden layer. These electrical parameters are used to construct a computer model of a portion of the hydrocarbon-bearing rock and at least one overburden layer, the computer model based upon modeling the formation as a rough-walled waveguide. This computer model is used to simulate propagation of radio frequency energy within the hydrocarbon-bearing rock, including simulation of radio frequency wave confinement within the hydrocarbon-bearing rock, at several frequencies and temperatures. A frequency for retorting is selected based upon simulation results. Radio frequency couplers are installed into at least one borehole in the hydrocarbon-bearing rock and driven with radio frequency energy to heat the hydrocarbon-bearing rock. As the rock heats, it releases carbon compounds and these are collected.
Owner:PAO HSUEH YUAN

Determining formation parameters using electromagnetic coupling components

A method to determine one or more parameters of a formation traversed by a borehole, at least a portion of the formation having substantially parallel boundaries, the method comprising disposing a tool in the borehole, wherein the tool includes a transmitter having a dipole moment at an angle θT with respect to a longitudinal axis of the tool and a receiver having a dipole moment at an angle θR with respect to the longitudinal axis of the tool, the transmitter and receiver comprising a transmitter-receiver pair; transmitting an electromagnetic signal while rotating the tool; receiving the electromagnetic signal to produce a measured signal from the transmitter-receiver pair; and determining the one or more formation parameters for the portion of the formation having substantially parallel boundaries based on the measured signal from the transmitter-receiver pair. A tool disposed in a borehole penetrating a formation, at least a portion of the formation having substantially parallel boundaries, the tool comprising a single transmitter having a transmitter dipole moment at an angle θT with respect to a longitudinal axis of the tool; a single receiver having a receiver dipole moment at an angle θR with respect to the longitudinal axis of the tool; and a rotational position indicator.
Owner:SCHLUMBERGER TECH CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products