Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3492results about "Material analysis by using resonance" patented technology

Frequency encoding of resonant mass sensors

A method for the detection of analytes using resonant mass sensors or sensor arrays comprises frequency encoding each sensor element, acquiring a time-domain resonance signal from the sensor or sensor array as it is exposed to analyte, detecting change in the frequency or resonant properties of each sensor element using a Fourier transform or other spectral analysis method, and classifying, identifying, and/or quantifying analyte using an appropriate data analysis procedure. Frequency encoded sensors or sensor arrays comprise sensor elements with frequency domain resonance signals that can be uniquely identified under a defined range of operating conditions. Frequency encoding can be realized either by fabricating individual sensor elements with unique resonant frequencies or by tuning or modifying identical resonant devices to unique frequencies by adding or removing mass from individual sensor elements. The array of sensor elements comprises multiple resonant structures that may have identical or unique sensing layers. The sensing layers influence the sensor elements' response to analyte. Time-domain signal is acquired, typically in a single data acquisition channel, and typically using either (1) a pulsed excitation followed by acquisition of the free oscillatory decay of the entire array or (2) a rapid scan acquisition of signal from the entire array in a direct or heterodyne configuration. Spectrum analysis of the time domain data is typically accomplished with Fourier transform analysis. The methods and sensor arrays of the invention enable rapid and sensitive analyte detection, classification and/or identification of complex mixtures and unknown compounds, and quantification of known analytes, using sensor element design and signal detection hardware that are robust, simple and low cost.
Owner:PALO ALTO SENSOR TECH INNOVATION

Detection of nucleic acids and nucleic acid units

PCT No. PCT/GB96/01830 Sec. 371 Date Apr. 21, 1998 Sec. 102(e) Date Apr. 21, 1998 PCT Filed Jul. 25, 1996 PCT Pub. No. WO97/05280 PCT Pub. Date Feb. 13, 1997The invention relates to the detection of target nucleic acids or nucleic acid units in a sample, by obtaining a SER(R)S spectrum for a SER(R)S-active complex containing, or derived directly from, the target. The complex includes at least a SER(R)S-active label, and optionally a target binding species containing a nucleic acid or nucleic acid unit. In this detection method, the concentration of the target present in the SER(R)S-active complex, or of the nucleic acid or unit contained in the target binding species in the SER(R)S-active complex, is no higher than 10-10 moles per liter. Additionally or alternatively, one or more of the following features may be used with the method: i) the introduction of a polyamine; ii) modification of the target, and/or of the nucleic acid or nucleic acid unit contained in the target binding species, in a manner that promotes or facilitates its chemi-sorption onto a SER(R)S-active surface; iii) inclusion of a chemi-sorptive functional group in the SER(R)S-active label. The invention also provides SER(R)S-active complexes for use in such a method, a kit for use in carrying out the method or preparing the complexes and a method for sequencing a nucleic acid which comprises the use of the detection method to detect at least one target nucleotide or sequence of nucleotides within the acid.
Owner:RENISHAW DIAGNOSTICS

Fluid parameter measurement in pipes using acoustic pressures

At least one parameter of at least one fluid in a pipe is measured using a spatial array of acoustic pressure sensors placed at predetermined axial locations along the pipe 12. The pressure sensors provide acoustic pressure signals, which are provided to a signal processing system that determines the speed of sound amix of the fluid (or mixture) in the pipe 12 using acoustic spatial array signal processing techniques. Numerous spatial array processing techniques may be employed to determine the speed of sound amix. The speed of sound amix is provided to another logic system that calculates the percent composition of the mixture, e.g., water fraction, or any other parameter of the mixture or fluid which is related to the sound speed amix. The signal processing system may also determine the Mach number Mx of the fluid. The acoustic pressure signals measured are lower frequency (and longer wavelength) signals than those used for ultrasonic flow meters, and thus are more tolerant to inhomogeneities in the flow. No external source is required and thus may operate using passive listening. The invention will work with arbitrary sensor spacing and with as few as two sensors if certain information is known about the acoustic properties of the system.
Owner:WEATHERFORD TECH HLDG LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products