Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

2159results about "Seismology for water-logging" patented technology

Simulation gridding method and apparatus including a structured areal gridder adapted for use by a reservoir simulator

A Flogrid Simulation Gridding Program includes a Flogrid structured gridder. The structured gridder includes a structured areal gridder and a block gridder. The structured areal gridder will build an areal grid on an uppermost horizon of an earth formation by performing the following steps: (1) building a boundary enclosing one or more fault intersection lines on the horizon, and building a triangulation that absorbs the boundary and the faults; (2) building a vector field on the triangulation; (3) building a web of control lines and additional lines inside the boundary which have a direction that corresponds to the direction of the vector field on the triangulation, thereby producing an areal grid; and (4) post-processing the areal grid so that the control lines and additional lines are equi-spaced or smoothly distributed. The block gridder of the structured gridder will drop coordinate lines down from the nodes of the areal grid to complete the construction of a three dimensional structured grid. A reservoir simulator will receive the structured grid and generate a set of simulation results which are displayed on a 3D Viewer for observation by a workstation operator.
Owner:SCHLUMBERGER TECH CORP

Integrated reservoir optimization

InactiveUS20050149307A1Maximize productionMaximizing value of propertyElectric/magnetic detection for well-loggingSurveyHigh rateAcquisition time
A method of managing a fluid or gas reservoir is disclosed which assimilates diverse data having different acquisition time scales and spatial scales of coverage for iteratively producing a reservoir development plan that is used for optimizing an overall performance of a reservoir. The method includes: (a) generating an initial reservoir characterization, (b) from the initial reservoir characterization, generating an initial reservoir development plan, (c) when the reservoir development plan is generated, incrementally advancing and generating a capital spending program, (d) when the capital spending program is generated, monitoring a performance of the reservoir by acquiring high rate monitor data from a first set of data measurements taken in the reservoir and using the high rate monitor data to perform well-regional and field-reservoir evaluations, (e) further monitoring the performance of the reservoir by acquiring low rate monitor data from a second set of data measurements taken in the reservoir, (f) assimilating together the high rate monitor data and the low rate monitor data, (g) from the high rate monitor data and the low rate monitor data, determining when it is necessary to update the initial reservoir development plan to produce a newly updated reservoir development plan, (h) when necessary, updating the initial reservoir development plan to produce the newly updated reservoir development plan, and (i) when the newly updated reservoir development plan is produced, repeating steps (c) through (h). A detailed disclosure is provided herein relating to the step (a) for generating the initial reservoir characterization and the step (b) for generating the initial reservoir development plan.
Owner:SCHLUMBERGER TECH CORP

Gps-based underwater cable positioning system

A GPS-based underwater cable positioning system for use in determining the shape and position of hydrophone streamers towed underwater behind survey vessels involved in marine seismic prospecting. The system includes a plurality of surface units towed behind the vessel. Each surface unit includes a GPS receiver to receive radio frequency GPS signals and to determine its positions. Each surface unit also has an acoustic transmitter to transmit an acoustic message signal representing its position and an optional time stamp into the water. Acoustic receiver units, attached spaced apart locations along one or more streamer cables, each include an acoustic receiver to receive the acoustic message signals from the surface units and to determine its position from the message signals. To augment the message signals from the surface units at locations distant from the surface units, acoustic transceiver units may be used. The acoustic transceiver units are attached to the streamer cables at ranges between the surface units and distant acoustic receiver units. The acoustic transceiver units each include an acoustic receiver that performs as the receivers in the acoustic receiver units and an acoustic transmitter to transmit acoustic message signals representing its position and an optional time stamp into the water to be received by the acoustic receiver units. In this way, the positions and shapes of towed streamer cables can be determined.
Owner:INPUT OUTPUT INC

Near wellbore modeling method and apparatus

A “near wellbore modeling” software will, when executed by a processor of a computer, model a localized area of a reservoir field which surrounds and is located near a specific wellbore in the reservoir field by performing the following functions: (1) receive input data representative of a reservoir field containing a plurality of wellbores, (2) establish a boundary around one specific wellbore in the reservoir field which will be individually modeled and simulated, (3) impose an “fine scale” unstructured grid inside the boundary consisting of a plurality of tetrahedrally shaped grid cells and further impose a fine scale structured grid about the perforated sections of the specific wellbore, (4) determine a plurality of fluxes/pressure values at the boundary, the fluxes/pressure values representing characteristics of the reservoir field located outside the boundary, (5) establish one or more properties for each tetrahedral cell of the unstructured grid and each cylindrical grid cell of the structured grid, (6) run a simulation, using the fluxes/pressure values at the boundary to mimic the reservoir field outside the boundary and using the fine scale grid inside the boundary, to thereby determine a plurality of simulation results corresponding, respectively, to the plurality of grid cells located inside the boundary, the plurality of simulation results being representative of a set of characteristics of the reservoir field located inside the boundary, (7) display the plurality of simulation results which characterize the reservoir field located inside the boundary, and (8) reintegrate by coarsening the grid inside the boundary, imposing a structured grid outside the boundary, and re-running a simulation of the entire reservoir field.
Owner:SCHLUMBERGER TECH CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products