Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

110results about How to "Excessive vibration" patented technology

Hybrid vehicle drive for a motor vehicle

A hybrid vehicle drive for a motor vehicle includes an internal combustion engine and an electric machine which is selectively coupled with the internal combustion engine. The electric machine can be operated as a generator and as a motor. Regulation device which responds to a reference signal predetermined by a reference signal preset device are provided for the active damping of vibrations, especially torsional vibrations in the torque transmission path between the internal combustion engine and wheels of the motor vehicle driven by the latter. The regulation device also respond to sensing device which deliver an actual-value vibration signal containing vibration information about a rotating structural component of the motor vehicle and control the load torque exerted on the internal combustion engine by the electric machine for reducing or eliminating the vibrations of the structural component. An analysis device for determining a frequency spectrum of the actual-value vibration signal is associated with the regulation device. The reference signal preset device establishes a reference signal with predetermined frequency spectrum. The regulation device control the frequency spectrum of the load torque exerted on the internal combustion engine by the electric machine such that excessive spectral vibrations of the actual-value vibration signal are reduced or eliminated.
Owner:ZF FRIEDRICHSHAFEN AG

Power generating system

This invention overcomes the disadvantages of the prior art by providing a power generating system particularly suitable for field use in remote locations, which is fuel-efficient, relatively quiet, tolerant of dust, capable of operating on low grade logistics and diesel-like fuels and capable of generating between 500 W and 2 KW of continuous electrical power. This generator employs a miniature internal combustion engine/generator (MICE) having a piston moving within a cylinder arranged for two-cycle operation, and an interconnected, axially arranged piston shaft that oscillates an alternator coil within a magnetic core. The piston shaft is opposed by a strong, multiple-helix spring. The cylinder head, in which the piston operates, is cooled by moving (electrically pumped) fluid in a cooling head, or by another heat-transfer mechanism. The MICE generator's intake arrangement includes a preheater heated by a heated fluid flow thereon. The MICE generator is vibration-isolated using a base that supports the MICE on a plurality of soft coil springs. The MICE generator is encased in an acoustic enclosure having a shell composed of sheet metal or another stiff material extending from the base plate and being covered by a top side. Holes in the enclosure top are covered by porous discs that allow exhaust gasses from the internal muffler to pass therethrough. The acoustic enclosure resides in a large, typically portable, external package enclosure.
Owner:AERODYNE RES

Well system

A drilling system includes a work string supporting a bottom hole assembly. The work string including lengths of pipe having a non-metallic portion. The work string preferably includes a composite umbilical having a fluid impermeable liner, multiple load carrying layers, and a wear layer. Multiple electrical conductors and data transmission conductors are embedded in the load carrying layers for carrying current or transmitting data between the bottom hole assembly and the surface. The bottom hole assembly includes a bit, a gamma ray and inclinometer instrument package, a propulsion system with resistivity antenna and steerable assembly, an electronics section, a transmission, and a power section for rotating the bit. The electrical conductors in the composite umbilical provide power to the electronics section and may provide power to the power section. The data transmission conduits in the composite umbilical transmit the data from the downhole sensors to the surface where the data is processed. The propulsion system includes two or more traction modules connected by rams disposed in cylinders for walking the bottom hole assembly up and down the borehole. The propulsion system includes a steerable assembly, controlled from the surface, for changing the trajectory of the borehole.
Owner:HALLIBURTON ENERGY SERVICES INC

Acceleration sensor

An acceleration sensor is disclosed that has a structure in which elastic support arms are not broken even if subjected to an impact that may be caused during a usual handling. The acceleration sensor comprises a mass portion, a mass portion top plate fixed onto the mass portion, a rectangular thick support frame surrounding the mass portion, a frame top plate fixed onto the frame, and four elastic support arms hanging the mass portion in the center of the frame and bridging the mass portion top plate and the frame top plate. There are provided lateral grooves just below the support arms on side surfaces of the mass portion and on inner side surfaces of the frame. Due to the grooves, the mass portion top plate and the frame top plate have their portions bonded to the mass portion/the frame and their portions protruding toward the support arms. Cross sections on boundaries between the bonded portions and the protruding portions are larger than those connecting the protruding portions to the support arms. Breakage of the elastic support arms is prevented, because the strain caused in the mass portion/the frame by an impact applied from outside is not directly transmitted to the support arms and is released in the protruding portions having a larger cross section than the support arms.
Owner:HITACHI METALS LTD

Complex flow-path heat exchanger having U-shaped tube and cantilever combined coil

A complex flow-path heat exchanger having U-shaped tube and cantilever combined coil, which can achieve, in this type heat exchanger, a simple construction, a complex flow of steam within the same one heat exchange shell body, a high heat exchange efficiency, and a low energy loss. The technical gift of the present invention is that, after entering into the heat exchanger, steam firstly effects heat exchange on the U-shaped tube flow path shell side to be cooled and condensed, thereafter entering into flow path tube side of the cantilever combined coil, which are disposed within the same one shell, for a secondary heat exchange, and subsequently flowing out of the heat exchanger after being subcooled. Such steam-water heat exchanger having a complex flow path are advantageous in a small steam flow resistance of the U-shaped tube flow path shell side; a higher condensate water flow velocity in the cantilever combined coils flow path tube; a high heat exchange coefficient; good coordination of the temperature difference fields of the hot and cold fluids in the heat exchanger; and a high heat exchange efficiency. Therefore, the present heat exchanger can be a new generation product relative to the currently-used conventional low-temperature, low-pressure and corrosion-free heat exchangers.
Owner:SHANDONG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products