Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

17747results about How to "Raise the ratio" patented technology

Fabric or garment with integrated flexible information infrastructure

A fabric, in the form of a woven or knitted fabric or garment, including a flexible information infrastructure integrated within the fabric for collecting, processing, transmitting and receiving information concerning-but not limited to-a wearer of the fabric. The fabric allows a new way to customize information processing devices to "fit" the wearer by selecting and plugging in (or removing) chips/sensors from the fabric thus creating a wearable, mobile information infrastructure that can operate in a stand-alone or networked mode. The fabric can be provided with sensors for monitoring physical aspects of the wearer, for example body vital signs, such as heart rate, EKG, pulse, respiration rate, temperature, voice, and allergic reaction, as well as penetration of the fabric. The fabric consists of a base fabric ("comfort component"), and an information infrastructure component which can consist of a penetration detection component, or an electrical conductive component, or both. The preferred penetration detection component is a sheathed optical fiber. The information infrastructure component can include, in addition to an electrically conductive textile yarn, a sensor or a connector for a sensor. A process is provided for making an electrical interconnection between intersecting electrically conductive yarns. Furthermore, a process is established for sheathing the plastic optical fiber and protecting it.
Owner:GEORGIA TECH RES CORP

METHOD OF MANUFACTURING ZnO SEMICONDUCTOR LAYER FOR ELECTRONIC DEVICE AND THIN FILM TRANSISTOR INCLUDING THE ZnO SEMICONDUCTOR LAYER

Provided are a method of manufacturing a ZnO semiconductor layer for an electronic device, which can control the size of crystals of the ZnO semiconductor layer and the number of carriers using a surface chemical reaction between precursors, and a thin film transistor (TFT) including the ZnO semiconductor layer. The method includes: (a) loading a substrate into a chamber; (b) injecting a Zn precursor into the chamber to adsorb the Zn precursor on the substrate; (c) injecting an inert gas or N2 gas into the chamber to remove the remaining Zn precursor; (d) injecting an oxygen precursor into the chamber to cause a reaction between the oxygen precursor and the Zn precursor adsorbed on the substrate to form the ZnO semiconductor layer; (e) injecting the N2 gas or inert gas into the chamber to remove the remaining oxygen precursor; (f) repeating steps (a) through (e); (g) repeatedly processing the surface treatment of the ZnO semiconductor layer using O2 plasma or O3; (h) injecting the N2 gas or inert gas into the chamber to remove the remaining oxygen and Zn precursors; and (i) repeating steps (a) through (h) to control the thickness of the ZnO semiconductor layer. In this method, a transparent TFT is formed using a transparent substrate to enable manufacture of a transparent display device, and a flexible display device can be manufactured using a flexible substrate. Also, the crystallinity of the ZnO semiconductor layer can be increased to improve the mobility of a TFT, and the number of carriers can be controlled to reduce a leakage current. Therefore, a ZnO semiconductor having excellent characteristics can be manufactured.
Owner:ELECTRONICS & TELECOMM RES INST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products