Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

824 results about "Lasing wavelength" patented technology

Since different lasing materials produce light of different wavelengths, they also produce laser beams with different power levels. The shortest wavelengths, from 10 to 400 nanometers (nm), produce ultraviolet (UV) light. Intermediate wavelengths, from 380 to 740 nm, produce visible (VIS) light from violet to red.

Multi-photon laser microscopy

A laser scanning microscope produces molecular excitation in a target material by simultaneous absorption of three or more photons to thereby provide intrinsic three-dimensional resolution. Fluorophores having single photon absorption in the short (ultraviolet or visible) wavelength range are excited by a beam of strongly focused subpicosecond pulses of laser light of relatively long (red or infrared) wavelength range. The fluorophores absorb at about one third, one fourth or even smaller fraction of the laser wavelength to produce fluorescent images of living cells and other microscopic objects. The fluorescent emission from the fluorophores increases cubicly, quarticly or even higher power law with the excitation intensity so that by focusing the laser light, fluorescence as well as photobleaching are confined to the vicinity of the focal plane. This feature provides depth of field resolution comparable to that produced by confocal laser scanning microscopes, and in addition reduces photobleaching and phototoxicity. Scanning of the laser beam by a laser scanning microscope, allows construction of images by collecting multi-photon excited fluorescence from each point in the scanned object while still satisfying the requirement for very high excitation intensity obtained by focusing the laser beam and by pulse time compressing the beam. The focused pulses also provide three-dimensional spatially resolved photochemistry which is particularly useful in photolytic release of caged effector molecules, marking a recording medium or in laser ablation or microsurgery. This invention refers explicitly to extensions of two-photon excitation where more than two photons are absorbed per excitation in this nonlinear microscopy.
Owner:WEBB WATT W +1

High-repetition-rate passively mode-locked solid-state laser

A passively mode-locked solid-state laser is designed to emit a continuous-wave train (51, 52) of electromagnetic-radiation pulses, the fundamental repetition rate of the emitted pulses exceeding 1 GHz, without Q-switching instabilities. The laser includes an optical resonator (3.1), a solid-state laser gain element (2) placed inside the optical resonator (3.1), a device (1) for exciting said laser gain element (2) to emit electromagnetic radiation having the effective wavelength, and a device (4) for passive mode locking including a saturable absorber. The laser gain element (2) is a laser material with a stimulated emission cross section exceeding 0.8×10−18 cm2 at the effective wavelength, and is made of Nd:vanadate. The saturable absorber (4) is preferably a semiconductor saturable absorber mirror (SESAM) device. Even higher repetition rates are achieved by operating the laser in the soliton regime. For use in fiber-optical telecommunication, the laser wavelength is preferably shifted to 1.5 μm by use of an optical parametric oscillator. The laser is simple, robust, compact, efficient, and low-cost. It generates a relatively large average power of 100 mW and higher, which is useful for a number of optical probing and detection applications, in a beam (51, 52) that is substantially a fundamental spatial mode.
Owner:LUMENTUM SWITZERLAND AG

Fire field multi- parameter optical maser wavelength modulated spectrum detector method and apparatus

The invention discloses a fire scene multi-parameter laser wavelength modulation spectrum detection method and a device thereof, wherein, fire smoke products are treated through a smoke pre-treatment device and then pumped into a white cell through an air extracting pump; a multi-channel laser controller scans and modulates the wavelengths of a plurality of DFB lasers according to the time-sharing and multiplexing working mode, and all waves of laser share an optical fiber and are outputted sequentially through a wave combiner, then are aligned by a fiber collimator and sent to the white cell to detect the fire smoke products; a photoelectric detector converts light intensity signals of laser repeatedly reflected and absorbed by the white cell into electrical signals which are sent to two phase-locking magnifier modules for frequency selecting magnification so as to obtain a fundamental frequency component and a second harmonic component; a multi-channel data acquisition card converts output voltage signals of the phase-locking magnifiers into digital signals which are sent to a micro-computer for real-time data processing, so that the fire scene multi-parameter information containing the oxygen concentration of the fire scene, concentrations of various toxic gases and smoke concentration is obtained. The detection method and device can realize real-time on-line monitoring to fire scene multi-parameters, and have the advantages of being real-time, multi-component and highly sensitive, good selectivity of gas, high reliability and strong environmental disturbance resistance ability.
Owner:UNIV OF SCI & TECH OF CHINA

Method and system for locking transmission wavelengths for lasers in a dense wavelength division multiplexer utilizing a tunable etalon

The method and system operate to calibrate a transmission laser of the dense wavelength division multiplexer (DWDM) and to lock the laser to a selected transmission wavelength. In one example, the transmission laser is a widely tunable laser (WTL) to be tuned to one of a set of International Telecommunications Union (ITU) transmission grid lines for transmission through an optic fiber. To lock the WTL to an ITU grid line, a portion of the output beam from the WTL is routed through the etalon to split the beam into a set of transmission lines for detection by an etalon fringe detector. Another portion of the beam is routed directly to a laser wavelength detector. A wavelength-locking controller compares signals from the two detectors and adjusts the temperature of the etalon to align the wavelength of one of the transmission lines of the etalon with the wavelength of the output beam, then controls the WTL in a feedback loop to lock the laser to the etalon line. The wavelength-locking controller thereafter monitors the temperature of the etalon and keeps the temperature constant to prevent any wavelength drift in the etalon. In one example, the optical components are aligned so that laser wavelength detector receives a portion of the laser beam directly from the laser so that phase characteristics of the laser beam are not affected by an intervening beamsplitter thereby permitting improved wavelength locking. In another embodiment, an etalon chirp filter is provided for reducing or eliminating optical frequency chirp, regardless of the particular ITU channel being used for transmission.
Owner:SPECTRASENSORS INC

Laser amplifiers with high gain and small thermal aberrations

The present invention discloses a laser amplifier with high gain and low thermally induced optical aberrations on the amplified laser beam. The amplifier designs allow simple multipass configurations to optimally extract the gain and reduce thermally induced index of refraction aberrations, making it possible to obtain an amplified laser beam of high quality combined with very high overall gains comparable to those achievable with expensive regenerative amplifiers. The amplifier includes a thin active laser solid to create the population inversion and associated heat generation within the thin laser active solid possible for the desired gain value. The system includes a cooling device in thermal contact with the thin active laser solid to provide good heat transport and high reflectivity coatings at the wavelengths of the pump and laser wavelengths. The pump light sources are laser diodes tuned to the maximum absorption of the laser active material. The amplifier also includes an optical system to transport the pump light to the laser active solid in such a way as to further confine the absorption of light along the two orthogonal directions in the plane of the laser active solid in order to get high population inversion and consequently high gains possible.
Owner:WUHAN HUARAY PRECISION LASER CO LTD

Fiber bragg grating sensor system

The present invention discloses a fiber Bragg grating sensor system. The system according to the present invention comprises a wavelength tunable laser; a coupler for splitting output light from the wavelength tunable laser into two directions; a reference wavelength generating unit for receiving one directional output light from the coupler and for generating reference wave-lengths and an absolute reference wavelength in order to measure real-time wavelengths of the wavelength tunable laser; a fiber Bragg grating array for receiving the other directional output light from the coupler and for reflecting lights at each of the wave-lengths of the grating therein; a fiber grating wavelength sensing unit for measuring the time when each of the reflected lights from the fiber Bragg grating array is detected; a signal processing unit for figuring wavelength variation information with the use of the measured signals from the reference wavelength generating unit and for obtaining each of wavelengths of the detected lights from the fiber grating wavelength sensing unit; and a laser wavelength control feedback unit for applying AC voltage and DC voltage to the wavelength tunable filter in the wavelength tunable laser. Also, polarization dependency in the sensor system can be removed further installing a depolarizer or a polarization scrambler at the output end of the wavelength tunable laser. By applying the present invention, measurement accuracy of the grating sensor system 20 can be improved due to enhanced wavelength stability and suppression of polarization dependency. Therefore, the fiber Bragg grating sensor system based on the present invention would replace conventional structure/construction diagnosis systems.
Owner:FIBERPRO INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products