Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

932 results about "Fine structure" patented technology

In atomic physics, the fine structure describes the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the non-relativistic Schrödinger equation. It was first measured precisely for the hydrogen atom by Albert A. Michelson and Edward W. Morley in 1887 laying the basis for the theoretical treatment by Arnold Sommerfeld, introducing the fine-structure constant.

Method and apparatus to encode/decode low bit-rate audio signal

InactiveUS20070016411A1Components is relatively effectiveReduce frequency bandwidthSpeech analysisFine structureENCODE
A method and apparatus to encode/decode a low bit-rate audio signal. The method of encoding a low bit-rate audio signal, includes quantizing and losslessly-encoding a specific frequency component of an audio signal in a frequency domain, generating codebooks using the audio signal in the frequency domain, detecting an envelope of a frequency component of the audio signal other than the specific frequency component in a specific band unit and quantizing and losslessly-encoding the detected envelope of the other frequency component, selecting a codebook that is most similar to the other frequency component of the audio signal to be encoded from among the generated codebooks and determining a codebook index (fine structure), losslessly-encoding the determined codebook index, and generating a bit stream using the specific frequency component, the envelope of the other frequency component, and the determined codebook index. The method of decoding a low bit-rate audio signal, includes restoring and dividing a bit stream into a specific frequency component and a frequency component other than the specific frequency component, losslessly-decoding and inversely quantizing the specific frequency component, restoring codebook index information and envelope information about the other frequency component, generating codebooks using the specific frequency component which is inversely quantized, and restoring the other frequency component using the restored codebook index information and the restored envelope information about the other frequency component.
Owner:SAMSUNG ELECTRONICS CO LTD

Multidirectional forging method for high-alloyed high-temperature alloy sheared billet/biscuit

ActiveCN106862447AAccurately measure uniformityGuaranteed uniformityMetal-working apparatusFine structureUltra fine
The invention relates to a forging method, in particular to a multidirectional forging method for obtaining a high-alloyed high-temperature alloy sheared billet/biscuit with the uniform and fine structure. The multidirectional forging method includes the following steps that (1) high-temperature homogenizing treatment is conducted on a low-segregation and high-purity controlled directional solidification ingot blank; (2) the controlled directional solidification ingot blank is subjected to upsetting and cogging; (3) the upset blank is forged into a cuboid blank; (4) multidirectional forging is conducted on the cuboid blank; (5) the blank subjected to multidirectional forging for multiple cycles is subjected to finishing, so that a shear billet/biscuit of the required size is obtained; and (6) the obtained shear billet/biscuit is subjected to physical and chemical testing. The multidirectional forging method is not only suitable for preparation of uniform and ultra-fine-grain high-alloyed nickel-based high-temperature alloy sheared billets for aviation, spaceflight and vessels, but also can be popularized to a steel mill to product high-speed steel and hot-working die steel, and the prepared ultra-fine-grain shear billets have the characteristic of uniform structure.
Owner:CENT IRON & STEEL RES INST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products