Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2137 results about "Real image" patented technology

In optics, a real image is an image which is located in the plane of convergence for the light rays that originate from a given object. If a screen is placed in the plane of a real image the image will generally become visible on the screen. Examples of real images include the image seen on a cinema screen (the source being the projector), the image produced on a detector in the rear of a camera, and the image produced on an eyeball retina (the camera and eye focus light through an internal convex lens). In ray diagrams (such as the images on the right), real rays of light are always represented by full, solid lines; perceived or extrapolated rays of light are represented by dashed lines. A real image occurs where rays converge, whereas a virtual image occurs where rays only appear to diverge.

Single image super-resolution reconstruction method based on conditional generative adversarial network

The invention discloses a single image super-resolution reconstruction method based on a conditional generative adversarial network. A judgment condition, namely an original real image, is added intoa judger network of the generative adversarial network. A deep residual error learning module is added into a generator network to realize learning of high-frequency information and alleviate the problem of gradient disappearance. The single low-resolution image is input to be reconstructed into a pre-trained conditional generative adversarial network, and super-resolution reconstruction is performed to obtain a reconstructed high-resolution image; learning steps of the conditional generative adversarial network model include: learning a model of the conditional adversarial network; inputtingthe high-resolution training set and the low-resolution training set into a conditional generative adversarial network model, using pre-trained model parameters as initialization parameters of the training, judging the convergence condition of the whole network through a loss function, obtaining a finally trained conditional generative adversarial network model when the loss function is converged,and storing the model parameters.
Owner:NANJING UNIV OF INFORMATION SCI & TECH

Methods and apparati for surgical navigation and visualization with microscope ("Micro Dex-Ray")

An improved system and method for macroscopic and microscopic surgical navigation and visualization are presented. In exemplary embodiments of the present invention an integrated system can include a computer which has stored three dimensional representations of a patient's internal anatomy, a display, a probe and an operation microscope. In exemplary embodiments of the present invention reference markers can be attached to the probe and the microscope, and the system can also include a tracking system which can track the 3D position and orientation of each of the probe and microscope. In exemplary embodiments of the present invention a system can include means for detecting changes in the imaging parameters of the microscope, such as, for example, magnification and focus, which occur as a result of user adjustment and operation of the microscope. The microscope can have, for example, a focal point position relative to the markers attached to the microscope and can, for example, be calibrated in the full range of microscope focus. In exemplary embodiments of the present invention, the position of the microscope can be obtained from the tracking data regarding the microscope and the focus can be obtained from, for example, a sensor integrated with the microscope. Additionally, a tip position of the probe can also be obtained from the tracking data of the reference markers on the probe, and means can be provided for registration of virtual representations of patient anatomical data with real images from one or more cameras on each of the probe and the microscope. In exemplary embodiments of the present invention visualization and navigation can be provided by each of the microscope and the probe, and when both are active the system can intelligently display a microscopic or a macroscopic (probe based) augmented image according to defined rules.
Owner:BRACCO IMAGINIG SPA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products