Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1497 results about "Vanadate" patented technology

In chemistry, a vanadate is a compound containing an oxoanion of vanadium generally in its highest oxidation state of +5. The simplest vanadate ion is the tetrahedral, orthovanadate, VO³⁻₄ anion, which is present in e.g. sodium orthovanadate and in solutions of V₂O₅ in strong base (pH > 13). Conventionally this ion is represented with a single double bond, however this is a resonance form as the ion is a regular tetrahedron with four equivalent oxygen atoms.

Composite smoke denitration catalyst capable of oxidizing zero-valence mercury

The invention provides a composite smoke denitration catalyst capable of oxidizing zero-valence mercury. The catalyst is composite oxide V2O5-CeO2-WO3/TiO2 or V2O5-CeO2-MoO3/TiO2 based on TiO2 as a carrier, wherein the weight proportion is as follows: the weight percent of TiO2 is 75-100, the weight percent of V is 1-1.5, the weight percent of Ce is 1-5, and the weight percent of W or Mo is 7.5-8.5. The preparation method comprises the following steps: depositing Ce(OH)3 on nano TiO2; dipping ammonium vanadate/ammonium molybdate; and drying and roasting so as to obtain the catalyst; or dipping a commercial SCR (selective catalytic reduction) catalyst in a cerous nitrate aqueous solution, and then drying and roasting. The catalyst provided by the invention maintains the denitraiton efficiency of the original SCR catalyst and simultaneously the oxidation rate of zero-valence mercury is obviously improved, and divalent mercury ions are captured in subsequent dedusting equipment and wet desulphurization system; and the application temperature range of the catalyst is wide, the combination control of emission amounts of nitrogen oxides and mercury in smoke of a fuel coal power plant can be achieved on the promise that the smoke purification facility of the fuel coal power plant is not added.
Owner:GUODIAN SCI & TECH RES INST

Method for preparing environment-friendly micro-arc oxidation black ceramic film on aluminum alloy surface

The invention discloses a method for preparing an environment-friendly micro-arc oxidation black ceramic film on an aluminum alloy surface, and the method comprises the following steps: firstly, pouring deionized water into an oxidation tank, weighing 1-10g / L of sodium hexametaphosphate, 1-3g / L of sodium silicate, 0.5-2g / L of potassium hydroxide, 0.2-2g / L of sodium fluoride and 0.5-20g / L of ferric ammonium oxalate in terms of the volume of the added deionized water, and uniformly stirring and mixing the sodium hexametaphosphate, the sodium silicate, the potassium hydroxide and the sodium fluoride to obtain a micro-arc oxidation base electrolyte; adding the weighed ferric ammonium oxalate into the base electrolyte, and stirring and mixing uniformly to obtain an aluminum alloy micro-arc oxidant solution; and then, sequentially carrying out surface deoiling and cleaning, water washing, aluminum alloy micro-arc oxidation, sealing and drying on the aluminum alloy to prepare the environment-friendly micro-arc oxidation black ceramic film on the aluminum alloy surface. By means of the preparation method disclosed by the invention, the problems of single color, limited application range, and environment pollution caused by a vanadate electrolyte, of the existing aluminum alloy ceramic film layer, are solved.
Owner:CSIC NO 12 RES INST

Preparation method and application of rare earth metal hydroxide or vanadate nano material

InactiveCN101624206AEffective control compositionEffective control structureVanadium compoundsRare earth metal compoundsNanowireRare earth
The invention provides a controllable preparation method and an application of rare earth metal hydroxide or vanadate nano material by using an ionic liquid assisted hydrothermal method. The preparation method comprises the following steps of taking rare earth metal salt, metavanadate and sodium hydroxide as raw materials, mixing evenly, adding deionized water to form precipitate, adding mixed solution of imidazolium ionic liquid and anhydrous ethyl alcohol, stirring for 10-30 min, transferring into a hydrothermal reaction kettle, carrying out hydrothermal reaction for 1-8h under the temperature of 100-220 DEG C and obtaining rare earth metal hydroxide nano particles, nano rods or nano-wire materials. If the reaction time is prolonged to 16-148h, rare earth vanadate one-dimensional nano-wire and two-dimensional nanoflake materials can be prepared. The method provided by the invention can effectively adjust and control phases and features of rare earth metal hydroxide and vanadate nano materials, and has the advantages of mild reaction conditions, simple technique, low cost, high yield and the like, thus being hopeful to be widely applied in the fields such as luminescent devices, electrocatalytic components, permanent magnets, biological and medical industry and the like.
Owner:NANKAI UNIV

Method for recycling vanadium and molybdenum from waste petroleum catalyst

The invention relates to a method for recycling vanadium and molybdenum from a waste petroleum catalyst, and belongs to the technical field of petrochemical industry. The method comprises air-burning and ball-removing, ball-milling, soda roasting-water leaching, aluminum removing, molybdenum precipitating and enriching molybdenum by ion exchange. The method specifically comprises the following steps: firstly, igniting sticky oil in the waste catalyst in air to burn carbon and oils in the waste catalyst; then, oxidizing the vanadium and nickel in the forms of porphyrin compounds in the waste catalyst into vanadium oxide and nickel oxide, converting most of the molybdenum into molybdenum oxide, wherein the waste catalyst subjected to air-burning and oil-removing is more beneficial for crushing, and the crushed waste catalyst and a certain proportion of sodium carbonate are mixed, and are roasted at a high temperature; leaching roasted materials by hot water, dissolving sodium salts of the vanadium and the molybdenum into water to obtain a solution, filtering the solution, introducing the filtered solution into a leaching solution, introducing a little aluminum into the leaching solution, regulating the pH value of the solution to remove aluminum; regulating the pH value of the solution to 8-9, adding ammonium chloride, precipitating and separating out the vanadium in the form of ammonium vanadate; and concentrating vanadium-precipitated solution by adopting an ion exchange process and enriching an ammonium molybdate solution.
Owner:刘楚玲

Treating fluid and method for preparing vanadium-zirconium composite conversion coatings with self-repairing performance on aluminum alloy surfaces through same

The invention belongs to the technical field of chemical materials, and relates to a treating fluid and a method for preparing vanadium-zirconium composite conversion coatings with self-repairing performance on aluminum alloy surfaces through the same. The method includes the steps of firstly preparing the treating fluid containing fluorozirconate, metavanadate, sodium fluoride, nitrate, an accelerate and an additive; then putting an aluminum alloy after surface pretreatment into a working fluid made of the diluted treating fluid for 2min-10min; and finally subjecting the aluminum alloy to washing, drying and cooling to obtain the vanadium-zirconium composite conversion coatings. The preparation process is simple, heavy metals such as hexavalent chromium and nickel are not contained, the environment is friendly, the conversion coatings of the aluminum alloy after a conversion coating treatment are dense and high in binding force, metal ions in the conversion coatings can bond with base metal under a corrosion environment and provided with a certain self-repairing performance, and the treating technology of vanadium-zirconium conversion coatings can effectively replace chromate treatment on aluminum alloy surfaces.
Owner:湖南松井先进表面处理与功能涂层研究院有限公司

Method for recovering vanadium in vanadium-titanium magnetite ore

The invention discloses a method for recovering vanadium in vanadium-titanium magnetite ore. The method comprises the process steps of: (1) mixing, pelletizing or briquetting, vanadium-titanium magnetite ore, a calcium additive and an adhesive, drying and oxidizing roasting to obtain roasting clinker; (2) performing carbonation leaching on the roasting clinker by utilizing leaching solution containing CO3<2->, and performing solid-liquid separation to obtain calcium-contained iron ore slag and chrome-vanadium-contained dissolving solution; and (3) adding a reagent with NH4+ into the dissolving solution for ammonia settlement, so as to obtain ammonia vanadate, or adding acid liquor into the dissolving solution, and directly acidifying to obtain V2O5. By adopting calcified roasting-carbonation leaching, the vanadium in the vanadium-titanium magnetite ore is recovered, obtained sintered pellets containing the calcium-contained iron ore slag can be directly applied to blast furnace smelting; and therefore, the problem of recovering the vanadium in the vanadium-titanium magnetite ore is effectively solved, and subsequent blast furnace smelting is not influenced. After the vanadium is recovered by using the method, chromium can be recovered from obtained crystallizing mother solution; and therefore, the vanadium-titanium magnetite ore is effectively and comprehensively utilized.
Owner:HEBEI IRON AND STEEL

Method for extracting vanadium and chromium from materials containing vanadium or/and chromium

A method for extracting vanadium and chromium from materials containing the vanadium or/and the chromium is characterized by comprising the following steps: taking salt and alkali of alkali metal or the alkali of the alkali metal as an oxidation transformation medium of the materials containing the vanadium or/and the chromium; carrying out treating for 0.5-6 hours at the temperature of 160-600 DEG C under the effect of an oxidizing agent and enabling the vanadium and the chromium in the materials to be converted into soluble vanadate and soluble chromate; carrying out water leaching to obtain leaching liquor containing the vanadium or/and the chromium; adding a precipitant A in the leaching liquor containing the vanadium or/and the chromium to selectively precipitate the vanadium at first, and adding a precipitant B to precipitate the chromium to obtain vanadium-rich residues and chromium-rich residues; and then separating and recycling the vanadium and the chromium from the vanadium-rich residues and the chromium-rich residues respectively. The vanadium and the chromium are separated and recycled effectively, and moreover, the effect of removing impurities simultaneously is achieved; liquor obtained after chromium precipitation is subjected to oxidization regeneration, evaporated and concentrated to obtain media, and the media are returned to an oxidation transformation procedure for the materials containing the vanadium or/and the chromium and are recycled. The method has the advantages of the simple technology, easiness and convenience in operation, the good vanadium and chromium separating effect, a high metal recovery rate, low production cost, environmental friendliness and the like, and is suitable for industrial application of extracting the vanadium and the chromium from the materials containing the vanadium or/and the chromium.
Owner:CENT SOUTH UNIV

Method for recovering vanadium and tungsten from tungsten containing vanadium-titanium based waste denitration catalyst

The invention relates to a method for recovering nonferrous metals from a waste denitration catalyst, and specifically relates to a method for recovering vanadium and tungsten from a tungsten containing vanadium-titanium based waste denitration catalyst. The method mainly comprises the following steps: crushing and grinding the catalyst, adding hydrogen peroxide to enable part of vanadium oxide to form pervanadic acid, and filtering to obtain a filter cake and a filtrate containing pervanadic acid; after heating the filtrate, filtering again to obtain V2O5, and mixing and circulating to use a novel filtrate and hydrogen peroxide; adding alkali liquor to the filter cake, stirring and heating, leaching the residual vanadium in form of metavanadate and leaching tungsten in form of metatungstate; filtering to obtain mixed liquor of metavanadate and metatungstate; adding ammonium salt into the mixed liquor to separate out ammonium metavanadate precipitate, further filtering to obtain an ammonium metavanadate filter cake and a third filtrate, and adding a concentrated acid into the third filtrate to separate out tungstic acid precipitate. The method and process provided by the invention are simple, and when metavanadate and tungstic acid are leached, calcination is avoided, so that the energy consumption is low, the solid-liquid reaction is good in contact, and the recovery rates of vanadium and tungsten are high.
Owner:BEIJING UNIV OF CHEM TECH

Efficient vanadium extraction method by performing alkali roasting on vanadium mineral

ActiveCN103088207ABreak the barrierEfficient DissolutionProcess efficiency improvementPotassium hydroxideDissolution
The invention discloses an efficient vanadium extraction method by performing alkali roasting on vanadium mineral. The method comprises the following processing steps of: (1) mixing the vanadium mineral with sodium hydroxide or potassium hydroxide for pellet fabrication, and oxidizing and roasting pellets at the temperature of 300-700 DEG C to obtain roasted clinker; (2) leaching the roasted clinker using water or aqueous alkali corresponding to the step 1, and then carrying out solid-liquid separation to obtain leaching residue and a vanadium dissolution solution; and (3) cooling and crystallizing silicon-removed vanadium digestion solution to obtain vanadate. The alkali roasting is used by the method provided by the invention, because alkali can function as a caking agent in the aggregating process, the caking agent can be saved; not only is the roasting temperature reduced largely and process flow largely shortened, but also no waste gas, ammonia-nitrogen wastewater and the like are discharged, as well as a leachate can be recycled; and a silicate phase can be directly destroyed to promote the destroy and the oxidization of a vanadium phase, and the oxidative enveloping and the leaching hindering of the silicate phase to the vanadium can be prevented so that the efficient vanadium leaching can be realized and the leaching rate can reach more than 95%.
Owner:HEBEI IRON AND STEEL

Method for extracting vanadium and chromium from vanadium-containing steel slag by high-alkalinity potassium hydroxide

ActiveCN102071321AHigh single recovery rateReduce productionProcess efficiency improvementSlagPotassium
The invention relates to a method for extracting vanadium and chromium from vanadium-containing steel slag by high-alkalinity potassium hydroxide, and belongs to the technical field of metallurgy. The invention adopts a technical scheme that: the steel slag together with water and potassium hydroxide is added into a reactor, the mixture is decomposed under normal pressure, and then the obtained reaction slurry is cooled and diluted by a diluent to obtain mixed slurry containing the potassium hydroxide, potassium vanadate, potassium silicate, potassium chromate and tailings; the alkalinity of the potassium hydroxide in the mixed slurry is controlled to be more than or equal to 100g / L, the mixed slurry is filtered and separated while the temperature is kept to be 80 to 130 DEG C to obtain the tailings and vanadium and chromium-containing water solution. The method has the advantages that: the high-temperature roasting is avoided, the reaction time is shortened, the single high-efficientextraction and simultaneous extraction of the vanadium and the chromium are realized; atmospheric pollutant as Cl2, HCl, dust, SO2 and the like caused by roasting are effectively avoided in the vanadium extraction process; and compared with the conventional roasting process, the generated amount and the discharged amount of waste water are effectively reduced, and clean production is realized.
Owner:HEBEI IRON AND STEEL

Synthesis method of alkaline earth metal vanadate micro/nano material by utilizing microwave radiation

The invention relates to a synthesis method of an alkaline earth metal vanadate micro/nano material by utilizing microwave radiation. According to the method, with an alkaline earth metal salt and ammonium metavanadate as the raw materials and distilled water as a solvent, the alkaline earth metal vanadate micro/nano material is prepared in a microwave radiation heating mode in the presence of a structure directing agent. The synthesis method is characterized in that: the microwave heating efficiency is high, and the phase and morphology of the product are effectively controlled through the adjustment and control of the raw material properties or the structure directing agent, ultimately the high-efficiency functional nano material is acquired; and the synthesis method has the significant advantages of no temperature and concentration hysteresis, high operability, mild reaction conditions, simple process, and the like and the microstructure of the product is controllable. The invention also provides valuable experience for the application of the metal vanadate micro/nano material in the fields of energy storage and conversion, sewage treatment, photocatalysis, biomedicine, etc.
Owner:NORTH CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY

Method for processing multi-metal alloy

The invention discloses a method for processing a multi-metal alloy. The method comprises the following steps of firstly, carrying out oxygen-enriched pressure leaching on the multi-metal alloy containing nickel, cobalt, tungsten, molybdenum, vanadium, and iron in the sulfuric acid system to selectively leach nickel and cobalt in the multi-metal alloy; precipitating a leaching solution containing nickel and cobalt through an alkaline substance to obtain a nickel-cobalt residue product; pressurizing the leaching residue containing molybdenum, vanadium, tungsten and iron, adding a small amount of ammonium persulfate, leaching with sodium hydroxide and after the leaching is completed, carrying out solid-liquid separation to obtain a leaching solution containing tungsten, molybdenum and vanadium; adjusting the pH of the leaching solution containing tungsten, molybdenum and vanadium with hydrochloric acid, adding a vanadium-precipitating agent so that vanadium is precipitated in a form of ammonium vanadate and firing ammonium vanadate to obtain a vanadium pentoxide product; and adsorbing tungsten and molybdenum in the vanadium-precipitated solution with anion resin and backwashing to obtain a high-concentration ammonium tungstate and ammonium molybdate solution, evaporating and crystallizing to obtain a mixed product of ammonium tungstate and ammonium molybdate. The processing method is simple in flow, the required device is less and simple, the device investment is low and simple in operation and the method is easy to promote.
Owner:BEIJING GENERAL RES INST OF MINING & METALLURGY

Combined chemical-electrochemical method for preparing vanadium redox flow battery electrolyte

The invention relates to a combined chemical-electrochemical method for preparing an all-vanadium redox flow battery electrolyte. The method adopts a solid or solution containing soluble vanadate, especially vanadium slag leachate obtained after steel-making with vanadic titano-magnetite, for production of a high-purity high-concentration vanadium electrolyte. The method is characterized in that a vanadyl sulfate electrolyte with a sulfuric acid concentration of 1 to 6 mol/L and a vanadium concentration of 1 to 5 mol/L can be prepared through impurity removal, acidic vanadium precipitation, multiple alkaline leaching and vanadium precipitation, calcination and reduction, an electrochemical process is cooperatively used so as to prepare a 3.5-valent or 3-valent vanadium electrolyte, and after electrolysis, the vanadium electrolyte of a positive electrode can be repeatedly used through chemical reduction. The method provided by the invention can treat the vanadium slag leachate and the solid or solution containing soluble vanadate and has the advantages of simple process flow, mild reaction conditions, substantially reduced cost, etc.; and the prepared high-purity high-concentration vanadium electrolyte is especially applicable to an all-vanadium redox flow battery.
Owner:NO 63971 TROOPS PLA +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products