Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4282 results about "Oxalate" patented technology

Oxalate (IUPAC: ethanedioate) is the dianion with the formula C₂O²⁻₄, also written (COO)²⁻₂. Either name is often used for derivatives, such as salts of oxalic acid, for example sodium oxalate Na₂C₂O₄, or dimethyl oxalate ((CH₃)₂C₂O₄). Oxalate also forms coordination compounds where it is sometimes abbreviated as ox.

Method for preparing diethyl oxalate by coupling CO

The invention discloses a method for preparing diethyl oxalate by CO coupling reaction. By applying a gas phase method, CO is coordinated with ethyl nitrite and is catalyzed by bimetallic supported catalyzer to couplingly generate crude diethyl oxalate, the reaction is a self-sealing circulation process, the CO gas mixed with the ethyl nitrite coming from a regeneration reactor is preheated and then enters into a coupling reactor, after the reaction, the gas is separated by condensation, so that the colorless and transparent condensed diethyl oxalate liquid is produced, and the uncondensed gas containing NO enters into the regeneration reactor to react with ethanol and oxygen in order to generate ethyl nitrite which is again circulated back to the coupling reactor for continuous use. The invention is carried out on the basis of previous laboratory research and under the background of industrial production and fulfils the continuous run examination of the bench scale test and pilot magnification under the condition of industrial operation, the temperature of the coupling reaction is low, and the concentration of products is increased. The method has the advantages of more energy saving, no pollution and high benefit. The total conversion rate of the CO generated by reaction is one hundred percent, and the selectivity of diethyl oxalate is over ninety six percent.
Owner:TIANJIN UNIV

Catalyzer for oxalic ester hydrogenation synthesizing of glycolate and method of preparing the same

A catalyst for hydrogenated synthesis of glycollate with oxalate and a preparation method for the catalyst belong to the glycollate preparation technical field. The catalyst of the present invention uses the copper metal as the main active component, and silver as the promoter, and is manufactured with the method of immersion. A carrier of the catalyst is the modified silica sol. The select content of the copper metal is 5 to 45 percent of the carrier weight, and the optimal content of the copper metal is 10 to 40 percent. The content of silver metal is 0.1 to 15 percent of the carrier weight, and the optimal content of silver metal is 1 to 8.0 percent. The select carrier is the silica sol with a double peak pore distribution structure and the specific surface area of the carrier is 100-300m2/g; and the optimal specific surface area of the carrier is 120-240m2/g. The present invention settles the problem of applying a Cr/Cu catalyst in the oxalate gas-phase catalytic hydrogenation. Proven by experiments, the catalyst is provided with the very high reaction activity and glycollate selectivity in the reaction to synthesize glycollate with oxalate and hydrogen Moreover, the catalyst is provided with the long usable life and the stable reaction performance, and can be easily controlled.
Owner:TIANJIN UNIV

High-capacity lithium-ion battery electrolyte of considering high-and-low temperature performance, preparation method and lithium-ion battery

The invention discloses a high-capacity lithium-ion battery electrolyte of considering high-and-low temperature performance. The electrolyte comprises a non-aqueous solvent, lithium hexafluorophate, a negative film-forming additive, an inflatable inhibition additive and a low-impedance additive, wherein the negative film-forming additive is prepared from fluoroethylene carbonate which accounts for 3%-15% of total mass of the electrolyte; the inflatable inhibition additive is prepared from one or two of 1,3-propene sultone or anhydride compounds which account for 0.3%-5% of total mass of the electrolyte; and the low-impedance additive is prepared from one or two of lithium difluorophosphate and difluoride phosphate lithium oxalate which account for 0.2%-3% of total mass of the electrolyte. The electrolyte is suitable for a high-nickel positive electrode and silicon-carbon composite negative electrode lithium-ion battery; the high-temperature storage performance and the low-temperature discharge performance of the lithium-ion battery are improved while the room-temperature cycle performance is considered; and meanwhile, the invention further provides a preparation method of the electrolyte and the high-capacity lithium-ion battery of using the electrolyte.
Owner:GUANGZHOU TINCI MATERIALS TECH

Polyester polycondensation with catalyst and a catalyst enhancer

The present invention is based upon the discovery that nontitanyl oxalates can enhance the catalytic functionality of titanyl oxalate catalysts. This invention provides a novel catalytic composition containing a titanyl oxalate catalyst and a metallic oxalate catalyst enhancer and optionally containing a metallic cocatalyst such as an antimony based catalyst. A synergistic relationship has been discovered between titanyl oxalate catalyst and the catalyst enhancer. A synergistic relationship has also been discovered between the titanyl oxalate catalyst, catalyst enhancer and a metallic cocatalyst such as antimony oxide or antimony triacetate. Also provided is an improved process of producing polyester by the polycondensation of polyester forming reactants in the presence of a catalytically effective amount of a polycondensation catalyst, wherein the improvement comprises utilizing, as the polycondensation catalyst, the novel catalyst composition containing a titanyl oxalate such as lithium titanyl oxalate and a catalyst enhancer such as a nontitanyl metallic oxalate like lithium oxalate and optionally containing a metallic catalyst such as antimony oxide or antimony triacetate. The improved process produces an improved polyester having lower acetaldehyde numbers and good color. The titanyl oxalate/catalyst enhancer composition can be used as a polycondensation catalyst in combination with other catalysts to achieve synergistic catalytic activity. Preferred is a combination of lithium or potassium titanyl oxalate, Li2 or K2TiO(C2O4)2, lithium or potassium oxalate, Li2 or K2(C2O4)2 with antimony oxide or antimony triacetate or antimony trisglycoxide.
Owner:ARKEMA INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products