Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1164 results about "Pyrophosphoric acid" patented technology

Pyrophosphoric acid, also known as diphosphoric acid, is the inorganic compound with the formula H₄P₂O₇ or, more descriptively, [(HO)₂P(O)]₂O. Colorless and odorless, it is soluble in water, diethyl ether, and ethyl alcohol. The anhydrous acid crystallizes in two polymorphs, which melt at 54.3 °C and 71.5 °C. The compound is not particular useful, except that it is a component of polyphosphoric acid and the conjugate acid of the pyrophosphate anion. Anions, salts, and esters of pyrophosphoric acid are called pyrophosphates.

Method of detecting primer extension reaction, method of discriminating base type, device for discriminating base type, device for detecting pyrophosphate, method of detecting nucleic acid and tip for introducing sample solution

Convenient techniques for discriminating the base type in a base sequence of a nucleic acid are provided. The technique includes the step (a) of preparing a sample solution containing a nucleic acid, a primer having a base sequence that includes a complementary binding region which complementarily binds to the nucleic acid, and a nucleotide; the step (b) of allowing the sample solution to stand under a condition to cause an extension reaction of the primer, and producing pyrophosphate when the extension reaction is caused; the step (c) of bringing the sample solution into contact with the front face of a H+ hardly permeable membrane having H+-pyrophosphatase, which penetrates from front to back of the membrane, of which active site that hydrolyzes pyrophosphate being exposed to the front face; the step (d) of measuring the H+ concentration of at least either one of the solution at the front face side of the H+ hardly permeable membrane or the solution at the back face side of the H+ hardly permeable membrane, in a state where the H+-pyrophosphatase is immersed in the solution; the step (e) of detecting the extension reaction on the basis of the result of measurement in the step (d) ; and the step (f) of discriminating the base type in the base sequence of the nucleic acid on the basis of the result of detection in the step (e).
Owner:PANASONIC CORP

Construction and application of farnesyl pyrophosphoric acid synthetase RNA (Ribonucleic Acid) interference recombinant lentivirus vector

InactiveCN101805750AOvercoming No Commercial AntibodyOvercoming low transfection efficiencyMetabolism disorderGenetic material ingredientsDiseaseFhit gene
The invention provides the construction for a farnesyl pyrophosphoric acid synthetase RNA (Ribonucleic Acid) interference recombinant lentivirus vector, which comprises the following steps of: sieving the most effective target sequence of an FDS (farnesyl diphosphate synthase) gene RNAi (RNA interference) in a tool cell 293T cell, synthesizing the double-stranded DNA of the most effective target sequence, connecting to a pGCSIL-GFP vector and successfully constructing the recombinant vector through enzyme cutting, sequencing and identification. Researches indicate that the constructed RNA interference vector LV-sh-FDS can downwards modulate the expression of an FDS mRNA (Messenger RNA) level in a neonatal rat cardiac myocyte, simultaneously can downwards modulate the expression of myocardial hypertrophy markers such as cell areas and marker genes beta-MHC (Myosin Heavy Chain) and BNP (Brain Natriuretic Peptide), additionally can effectively inhabit the activity of RhoA while downwards modulating the FDS, can be applied in preparing medicaments for treating myocardial hypertrophy diseases and also can be applied in preparing medicaments for cholesterol metabolic control.
Owner:ZHEJIANG UNIV

Genetically engineered bacterium for high-yielding L-valine and method for producing L-valine by fermentation

The invention provides a genetically engineered bacterium for high-yielding L-valine. A construction method of the genetically engineered bacterium comprises the steps that starting from an escherichia coli W3110, an acetolactate synthase gene alsS of a bacillus subtilis is integrated on a genome of the escherichia coli W3110 and subjected to high expression; an escherichia coli ppGpp 3'-pyrophosphoric acid hydrolytic enzyme mutant R290E/K292D gene spoT is integrated on the genome of the escherichia coli W3110 and subjected to high expression; genes of frdA, frdB, frdC and frdD of four subunits of a lactic dehydrogenase gene ldhA, a pyruvate formate lyase I gene pflB and fumaric reductase on the genome of the escherichia coli W3110 are knocked out; a branched chain amino acid transaminasegene ilvE of the escherichia coli is replaced with leucine dehydrogenase gene bcd of the bacillus subtilis; and an acetyl-hydroxyl acid isomerized reductase gene ilvC of the escherichia coli is replaced with an encoding gene of a mutant L67E/R68F/K75E. According to the genetically engineered bacterium for the high-yielding L-valine, an L-valine fermentation method is further modified. Double-phasedissolved oxygen control is adopted, and the L-valine yield and the saccharic acid conversion rate are improved.
Owner:TIANJIN UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products