Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3503 results about "Linear regression" patented technology

In statistics, linear regression is a linear approach to modeling the relationship between a scalar response (or dependent variable) and one or more explanatory variables (or independent variables). The case of one explanatory variable is called simple linear regression. For more than one explanatory variable, the process is called multiple linear regression. This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable.

Sensor-fault diagnosing method based on online prediction of least-squares support-vector machine

The invention discloses a sensor-fault diagnosing method based on the online prediction of a least-squares support-vector machine. In the method, a least-squares support-vector machine online-predicting model is established, and then the measured data of a sensor is acquired on line and used as an input sample of the least-squares support-vector machine online-predicting model to realize that the output value of the sensor at the next moment is predicted in real time as the predicting model is trained on line. Whether sensor faults occur or not is detected by comparing residual errors generated by the predicting value and the actual output value of the sensor. When the faults occur, the unary linear regression for a residual-error sequence is carried out by a least-squares method to realize the identification of the deviation and drift faults of the sensor, and furthermore, measures can be more effectively taken to carry out real-time compensation for the output of the sensor. Through the sensor-fault diagnosing method, the online fault diagnosis of the sensor can be rapidly and accurately realized, and the sensor-fault diagnosing method is particularly applicable to diagnosing the deviation faults and the drift faults of the sensor.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Battery energy storage system peak clipping and valley filling real-time control method based on load prediction

The invention relates to a battery energy storage system peak clipping and valley filling real-time control method based on load prediction and belongs to the field of power system automatic control. The control method provided by the invention comprises the following steps of: firstly searching similar history daily load data, carrying out expanding short-term load prediction by adopting a linear regression analysis method, building a battery energy storage system peak clipping and valley filling real-time optimization model, solving the battery energy storage system peak clipping and valley filling real-time optimization model by adopting a dynamic programming algorithm, and obtaining the output power of a battery energy storage system at each moment. The control method provided by the invention comprises battery charging and discharging frequency constraint and discharge depth constraint in the real-time optimization model, is used for researching relation between battery life and the charging and discharging frequency and the relation between the battery life and the discharge depth and is beneficial to prolonging the battery life. Minimum load variance is taken as a target function, the peak-to-valley of a load curve can be reduced, the load curve is smoother while constraint conditions are met, and the peak clipping and valley filling application requirement can be met. Local part of the load curve can be smoother by adopting load smoothness constraint.
Owner:北京宝光智中能源科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products