Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

3871 results about "Bromine" patented technology

Bromine is a chemical element with symbol Br and atomic number 35. It is the third-lightest halogen, and is a fuming red-brown liquid at room temperature that evaporates readily to form a similarly coloured gas. Its properties are thus intermediate between those of chlorine and iodine. Isolated independently by two chemists, Carl Jacob Löwig (in 1825) and Antoine Jérôme Balard (in 1826), its name was derived from the Ancient Greek βρῶμος ("stench"), referencing its sharp and disagreeable smell.

Method of etching patterned layers useful as masking during subsequent etching or for damascene structures

A first embodiment of the present invention pertains to a method of patterning a semiconductor device conductive feature while permitting easy removal of any residual masking layer which remains after completion of the etching process. A multi-layered masking structure is used which includes a layer of high-temperature organic-based masking material overlaid by either a patterned layer of inorganic masking material or by a layer of patterned high-temperature imageable organic masking material. The inorganic masking material is used to transfer a pattern to the high-temperature organic-based masking material and is then removed. The high-temperature organic-based masking material is used to transfer the pattern and then may be removed if desired. This method is also useful in the pattern etching of aluminum, even though aluminum can be etched at lower temperatures. A second embodiment of the present invention pertains to a specialized etch chemistry useful in the patterning of organic polymeric layers such as low k dielectrics, or other organic polymeric interfacial layers. This etch chemistry is useful for mask opening during the etch of a conductive layer or is useful in etching damascene structures where a metal fill layer is applied over the surface of a patterned organic-based dielectric layer. The etch chemistry provides for the use of etchant plasma species which minimize oxygen, fluorine, chlorine, and bromine content.

Method for preparing high activity non-metallic ion co-doped titanium dioxide photochemical catalyst

In order to degrade the pollutants in water and atmosphere by the photocatalysis technology, the invention discloses a method for preparing a high activity non-metallic ion co-doped titanium dioxide photochemical catalyst. In the photochemical catalyst, titanium ester or titanate is used as a precursor, non-metallic compound comprising boron, carbon, nitrogen, fluorin, silicon, phosphor, sulfur, chlorine, bromine, iodine, and the like, are used as doping agents, the high activity non-metallic ion co-doped titanium dioxide photochemical catalyst is prepared by adopting the sol gel method. Compared with a titanium dioxide photochemical catalyst single-doped with pure titanium dioxide and the non-metallic irons, the visible light catalytic activity of the titanium dioxide photochemical catalyst on the degradation of parachlorophenol is greatly improved, and the ultraviolet light catalytic activity can also exceed the catalytic activity of the pure titanium dioxide catalyst. The method also has the advantages that the preparation technique is simple, the equipment requirement is low; the particle diameter of the product is small, the specific surface is relatively high, the dispersivity is good, thus having a wide application prospect in the environmental cleaning scientific field.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products