Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

18295results about "Specific water treatment objectives" patented technology

Intermittent gas flow apparatus and membrane separation apparatus

Intermittent gas flow and membrane separation apparatus and methods of use including an internal gas chamber including an upper wall; at least one inlet for supplying gas to the internal gas chamber; a column pipe that extends above the upper wall of the internal gas chamber, the column pipe including a lower end portion including a lower end portion opening in the internal gas chamber, the column pipe linking the internal gas chamber to an area external to the internal gas chamber for fluid flow between the internal gas chamber and the external area; an auxiliary pipe including one end portion connected to the column pipe for fluid flow between the auxiliary pipe and the column pipe, and another end portion branched off from the column pipe, the another end portion including an opening located in the internal gas chamber at a position higher than the lower end portion opening of the column pipe by a predetermined height; and an auxiliary pipe external tubular member including a closed end, the auxiliary pipe external tubular member surrounding the another end portion of the auxiliary pipe with the closed end being positioned below the opening in the another end portion of the auxiliary pipe, and spaced from the another end portion by a predetermined distance permitting fluid flow into the space between the wall of the tubular member and the auxiliary pipe.

Method and apparatus for producting negative and positive oxidative reductive potential (orp) water

ActiveUS20050121334A1Effective and efficient and economicalCellsWater treatment parameter controlParticulatesElectrolysis
A method and apparatus for electrolytically producing oxidation reduction potential water from aqueous salt solutions for use in disinfection, sterilization, decontamination, wound cleansing. The apparatus includes an electrolysis unit having a three-compartment cell (22) comprising a cathode chamber (18), an anode chamber (16), and a saline solution chamber (20) interposed between the anode and cathod chambers. Two communicating (24, 26) membranes separate the three chambers. The center chamber includes a fluid flow inlet (21a) and outlet (21b) and contains insulative material that ensures direct voltage potential does not travel through the chamber. A supply of water flows through the cathode and anode chambers at the respective sides of the saline chamber. Saline solution flows through the center chamber, either by circulating a pre-prepared aqueous solution containing ionic species, or, alternatively, by circulating pure water or an aqueous solution of, e.g., aqueous hydrogen chloride and ammonium hydroxide, over particulate insulative material coated with a solid electrolyte. Electrical current is provided to the communicating membranes separating the chambers, thus causing an electrolytic reaction that produces both oxidative (positive) and reductive (negative) ORP water.

Production of potable water and freshwater needs for human, animal and plants from hot and humid air

InactiveUS6868690B2Reduces cargo spaceMinimize any benefitGeneral water supply conservationSeawater treatmentParticulatesFresh water organism
Systems and methods are disclosed for extracting freshwater from atmospheric humidity in extremely hot and humid climates and supplying freshwater to a small group of people, a building, a farm, or forestation area. The freshwater is treated to provide drinking water by disinfecting to eliminate microorganisms and filtration to remove suspended particulates from air, erosion or corrosion products, and disinfected waste. Compact units provide drinking water for individuals, passengers in cars, vans, trucks, or recreational boats, or crewmembers on a seagoing cargo ship whether from atmospheric humidity or from moisture-laden gases. Furthermore, systems are disclosed for the ample supply of freshwater with minimal treatment for small- to large-sized buildings in a manner that alleviates the heat load on buildings. Collection of freshwater from hot humid ambient air is also provided for other uses, such as irrigation and farm animal drinking. Various methods are used for condensation of water vapor suspended in the air as alternative to conventional refrigeration cycles using CFC refrigerants. Devices are disclosed using naturally occurring brackish cold water, circulation of cooling water cooled by thermoelectric cooling or thermoacoustic refrigeration as well as evaporative cooling and transpiration cooling. Water produced by the systems may flow under gravitational forces entirely or with the assistance of boasting pumps.

Sewage treatment unit with good practicality

The invention discloses a sewage treatment unit with good practicality. The sewage treatment unit comprises a settling box, a purifying box and a disinfection box, wherein the top end of one side of the settling box is provided with a chemical reagent tank; the top of the settling box is provided with a stirring motor; a sludge discharge outlet is formed in the bottom end of the settling box; the interior of the purifying box is provided with, from top to bottom, a magnet adsorption screen, a biomembrane filter screen and an active carbon filter screen; the sidewall of the disinfection box is provided with an ozone generator; and gas-distributing pipes are arranged in the disinfection box. The sewage treatment unit provided by the invention can effectively eliminate heavy metals, microbes, organic harmful substances, particulate matters and other impurities in water, is capable of removing pigments and peculiar smell in water, and has improved sewage treatment effect; and since the ozone generator is mounted on the sidewall of the disinfection box, ozone generated by the ozone generator can be used for sterilization and disinfection of purified clear water after purification of sewage, so sewage is allowed to reach discharge standard.

Microorganism control of point-of-use potable water sources

The present invention provides for the electrochemical generation of ozone for use in "point-of-use" applications. The electrochemical ozone generators or systems of the present invention may be used to provide disinfected water, ozone-containing water, and/or ozone gas. Disinfected water may be produced by introducing ozone gas into a potable or purified water source for the purpose of disinfecting or controlling the microorganisms in the water source. Ozonated water or ozone gas may be produced and provided for various anti-microbial and cleansing applications of the consumer, such as washing food, clothing, dishes, countertops, toys, sinks, bathroom surfaces, and the like. Furthermore, the ozone generator may be used to deliver a stream of ozone-containing water for the purpose of commercial or residential point-of-use washing, disinfecting, and sterilizing medical instruments and medical equipment. For example, the ozone-containing water may be used directly or used as a concentrated sterilant for the washing, disinfecting, and sterilizing of medical instruments or equipment. Ozone gas may also be used in many of the foregoing examples, as well as in the deodorization of air or various other applications. The invention allows the electrochemical ozone generator to operate in a nearly or entirely passive manner with simplicity of design.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products