Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

5019 results about "Vapour deposition" patented technology

Physical vapour deposition. Physical vapour deposition (PVD) is a process used to produce a metal vapour that can be deposited on electrically conductive materials as a thin, highly adhered pure metal or alloy coating. The process is carried out in a vacuum chamber at high vacuum (10–6 torr) using a cathodic arc source.

Apparatuses and methods for atomic layer deposition of hafnium-containing high-k dielectric materials

Embodiments of the invention provide methods for depositing dielectric materials on substrates during vapor deposition processes, such as atomic layer deposition (ALD). In one example, a method includes sequentially exposing a substrate to a hafnium precursor and an oxidizing gas to deposit a hafnium oxide material thereon. In another example, a hafnium silicate material is deposited by sequentially exposing a substrate to the oxidizing gas and a process gas containing a hafnium precursor and a silicon precursor. The oxidizing gas usually contains water vapor formed by flowing a hydrogen source gas and an oxygen source gas through a water vapor generator. In another example, a method includes sequentially exposing a substrate to the oxidizing gas and at least one precursor to deposit hafnium oxide, zirconium oxide, lanthanum oxide, tantalum oxide, titanium oxide, aluminum oxide, silicon oxide, aluminates thereof, silicates thereof, derivatives thereof or combinations thereof.
Owner:APPLIED MATERIALS INC

Fabrication of low defectivity electrochromic devices

Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and / or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
Owner:VIEW INC

Vapor deposition method for ternary compounds

Embodiments provide a method for depositing or forming titanium aluminum nitride materials during a vapor deposition process, such as atomic layer deposition (ALD) or plasma-enhanced ALD (PE-ALD). In some embodiments, a titanium aluminum nitride material is formed by sequentially exposing a substrate to a titanium precursor and a nitrogen plasma to form a titanium nitride layer, exposing the titanium nitride layer to a plasma treatment process, and exposing the titanium nitride layer to an aluminum precursor while depositing an aluminum layer thereon. The process may be repeated multiple times to deposit a plurality of titanium nitride and aluminum layers. Subsequently, the substrate may be annealed to form the titanium aluminum nitride material from the plurality of layers. In other embodiments, the titanium aluminum nitride material may be formed by sequentially exposing the substrate to the nitrogen plasma and a deposition gas which contains the titanium and aluminum precursors.
Owner:APPLIED MATERIALS INC

Treatment processes for a batch ALD reactor

Embodiments of the invention provide treatment processes to reduce substrate contamination during a fabrication process within a vapor deposition chamber. A treatment process may be conducted before, during or after a vapor deposition process, such as an atomic layer deposition (ALD) process. In one example of an ALD process, a process cycle, containing an intermediate treatment step and a predetermined number of ALD cycles, is repeated until the deposited material has a desired thickness. The chamber and substrates may be exposed to an inert gas, an oxidizing gas, a nitriding gas, a reducing gas or plasmas thereof during the treatment processes. In some examples, the treatment gas contains ozone, water, ammonia, nitrogen, argon or hydrogen. In one example, a process for depositing a hafnium oxide material within a batch process chamber includes a pretreatment step, an intermediate step during an ALD process and a post-treatment step.
Owner:APPLIED MATERIALS INC

Apparatuses and methods for atomic layer deposition of hafnium-containing high-k dielectric materials

Embodiments of the invention provide apparatuses and methods for depositing materials on substrates during vapor deposition processes, such as atomic layer deposition (ALD). In one embodiment, a chamber contains a substrate support with a receiving surface and a chamber lid containing an expanding channel formed within a thermally insulating material. The chamber further includes at least one conduit coupled to a gas inlet within the expanding channel and positioned to provide a gas flow through the expanding channel in a circular direction, such as a vortex, a helix, a spiral or derivatives thereof. The expanding channel may be formed directly within the chamber lid or formed within a funnel liner attached thereon. The chamber may contain a retaining ring, an upper process liner, a lower process liner or a slip valve liner. Liners usually have a polished surface finish and contain a thermally insulating material such as fused quartz or ceramic. In an alternative embodiment, a deposition system contains a catalytic water vapor generator connected to an ALD chamber.
Owner:APPLIED MATERIALS INC

Method for vapor deposition of a metal compound film

A method for forming a metal compound film includes alternate irradiation of an organometal compound and oxygen or nitrogen radicals to deposit monoatomic layers of the metal compound. The organometal compound includes zirconium, hafnium, lanthanide compounds. The resultant film includes little residual carbon and has excellent film characteristic with respect to leakage current.
Owner:RENESAS ELECTRONICS CORP

Chemical vapor deposition of high quality flow-like silicon dioxide using a silicon containing precursor and atomic oxygen

Methods of depositing a silicon oxide layer on a substrate are described. The methods may include the steps of providing a substrate to a deposition chamber, generating an atomic oxygen precursor outside the deposition chamber, and introducing the atomic oxygen precursor into the chamber. The methods may also include introducing a silicon precursor to the deposition chamber, where the silicon precursor and the atomic oxygen precursor are first mixed in the chamber. The silicon precursor and the atomic oxygen precursor react to form the silicon oxide layer on the substrate, and the deposited silicon oxide layer may be annealed. Systems to deposit a silicon oxide layer on a substrate are also described.
Owner:APPLIED MATERIALS INC

Reactive site deactivation against vapor deposition

Methods and structures relating to the formation of mixed SAMs for preventing undesirable growth or nucleation on exposed surfaces inside a reactor are described. A mixed SAM can be formed on surfaces for which nucleation is not desired by introducing a first SAM precursor having molecules of a first length and a second SAM precursor having molecules of a second length shorter than the first. Examples of exposed surfaces for which a mixed SAM can be provided over include reactor surfaces and select surfaces of integrated circuit structures, such as insulator and dielectric layers.
Owner:ASM IP HLDG BV

Apparatus for thermal and plasma enhanced vapor deposition and method of operating

A method, computer readable medium, and system for vapor deposition on a substrate that maintain a first assembly of the vapor deposition system at a first temperature, maintain a second assembly of the vapor deposition system at a reduced temperature lower than the first temperature, dispose the substrate in a process space of the first assembly that is vacuum isolated from a transfer space in the second assembly, and deposit a material on the substrate. As such, the system includes a first assembly having a process space configured to facilitate material deposition, a second assembly coupled to the first assembly and having a transfer space to facilitate transfer of the substrate into and out of the deposition system, a substrate stage connected to the second assembly and configured to support the substrate, and a sealing assembly configured to separate the process space from the transfer space. The first assembly is configured to be maintained at a first temperature and the second assembly is configured to be maintained at a reduced temperature lower than the first temperature.
Owner:TOKYO ELECTRON LTD

Chemical vapor deposition apparatus

Provided is a chemical vapor deposition apparatus including a reaction chamber; a susceptor that is provided in the reaction chamber and has a plurality of wafers mounted thereon; a rotation driving unit that rotates the susceptor; a gas inlet that is provided in the reaction chamber and introduces reaction gas into the reaction chamber from the outside of the reaction chamber; a gas outlet that is provided in the reaction chamber and discharges the reaction gas, of which the reaction is finished, from the inside of the reaction chamber along the rotation-axis direction of the susceptor; and a variable gas-flow adjusting unit that is provided between the gas inlet and the gas outlet and is formed by superimposing a plurality of gas jetting plates having a plurality of holes.
Owner:SAMSUNG ELECTRONICS CO LTD

Low Temperature Deposition of Silicon-Containing Films

This invention discloses the method of forming silicon nitride, silicon oxynitride, silicon oxide, carbon-doped silicon nitride, carbon-doped silicon oxide and carbon-doped oxynitride films at low deposition temperatures. The silicon containing precursors used for the deposition are monochlorosilane (MCS) and monochloroalkylsilanes. The method is preferably carried out by using plasma enhanced atomic layer deposition, plasma enhanced chemical vapor deposition, and plasma enhanced cyclic chemical vapor deposition.
Owner:TOKYO ELECTRON LTD +1

Method and system to reduce outgassing in a reaction chamber

Systems and methods of reducing outgassing of a substance within a reaction chamber of a reactor are disclosed. Exemplary methods include depositing a barrier layer within the reaction chamber and using a scavenging precursor to react with species on a surface of the reaction chamber. Exemplary systems include gas-phase deposition systems, such as atomic layer deposition systems, which include a barrier layer source and / or a scavenging precursor source fluidly coupled to a reaction chamber of the system.
Owner:ASM IP HLDG BV

Selective cobalt deposition on copper surfaces

Embodiments of the invention provide processes to selectively form a cobalt layer on a copper surface over exposed dielectric surfaces. In one embodiment, a method for capping a copper surface on a substrate is provided which includes positioning a substrate within a processing chamber, wherein the substrate contains a contaminated copper surface and a dielectric surface, exposing the contaminated copper surface to a reducing agent while forming a copper surface during a pre-treatment process, exposing the substrate to a cobalt precursor gas to selectively form a cobalt capping layer over the copper surface while leaving exposed the dielectric surface during a vapor deposition process, and depositing a dielectric barrier layer over the cobalt capping layer and the dielectric surface. In another embodiment, a deposition-treatment cycle includes performing the vapor deposition process and subsequently a post-treatment process, which deposition-treatment cycle may be repeated to form multiple cobalt capping layers.
Owner:APPLIED MATERIALS INC

Method for fabricating an ultralow dielectric constant material as an intralevel or interlevel dielectric in a semiconductor device and electronic device made

A method for fabricating a thermally stable ultralow dielectric constant film comprising Si, C, O and H atoms in a parallel plate chemical vapor deposition process utilizing a plasma enhanced chemical vapor deposition (“PECVD”) process is disclosed. Electronic devices containing insulating layers of thermally stable ultralow dielectric constant materials that are prepared by the method are further disclosed. To enable the fabrication of a thermally stable ultralow dielectric constant film, specific precursor materials are used, such as, silane derivatives, for instance, diethoxymethylsilane (DEMS) and organic molecules, for instance, bicycloheptadiene and cyclopentene oxide.
Owner:INTEL CORP

Ampoule with a thermally conductive coating

Embodiments of the invention provide an apparatus and a process for generating a chemical precursor used in a vapor deposition processing system. The apparatus includes a canister (e.g., ampoule) having a sidewall, a top, and a bottom encompassing an interior volume therein, inlet and outlet ports in fluid communication with the interior volume, and a thermally conductive coating disposed on or over the outside surface of the canister. The thermally conductive coating is more thermally conductive than the outside surface of the canister. The thermally conductive coating may contain aluminum, aluminum nitride, copper, brass, silver, titanium, silicon nitride, or alloys thereof. In some embodiments, an adhesion layer (e.g., titanium or tantalum) may be disposed between the outside surface of the canister and the thermally conductive coating. In other embodiments, the canister may contain a plurality of baffles or solid heat-transfer particles to help evenly heat a solid precursor therein.
Owner:APPLIED MATERIALS INC

Deposition of an intermediate catalytic layer on a barrier layer for copper metallization

In one embodiment, a method for depositing a conductive material on a substrate is provided which includes exposing a substrate containing a barrier layer to a volatile reducing precursor to form a reducing layer during a soak process, exposing the reducing layer to a catalytic-metal precursor to deposit a catalytic metal-containing layer on the barrier layer, and depositing a conductive layer (e.g., copper) on the catalytic metal-containing layer. The volatile reducing precursor may include phosphine, diborane, silane, a plasma thereof, or a combination thereof and be exposed to the substrate for a time period within a range from about 1 second to about 30 seconds during the soak process. The catalytic metal-containing layer may contain ruthenium, cobalt, rhodium, iridium, nickel, palladium, platinum, silver, or copper. In one example, the catalytic metal-containing layer is deposited by a vapor deposition process utilizing ruthenium tetroxide formed by an in situ process.
Owner:APPLIED MATERIALS INC

Methods for depositing nickel films and for making nickel silicide and nickel germanide

In one aspect, methods of silicidation and germanidation are provided. In some embodiments, methods for forming metal silicide can include forming a non-oxide interface, such as germanium or solid antimony, over exposed silicon regions of a substrate. Metal oxide is formed over the interface layer. Annealing and reducing causes metal from the metal oxide to react with the underlying silicon and form metal silicide. Additionally, metal germanide can be formed by reduction of metal oxide over germanium, whether or not any underlying silicon is also silicided. In other embodiments, nickel is deposited directly and an interface layer is not used. In another aspect, methods of depositing nickel thin films by vapor phase deposition processes are provided. In some embodiments, nickel thin films are deposited by ALD. Nickel thin films can be used directly in silicidation and germanidation processes.
Owner:ASM INTERNATIONAL

Vapor phase deposition of organic films

Methods and apparatus for vapor deposition of an organic film are configured to vaporize an organic reactant at a first temperature, transport the vapor to a reaction chamber housing a substrate, and maintain the substrate at a lower temperature than the vaporization temperature. Alternating contact of the substrate with the organic reactant and a second reactant in a sequential deposition sequence can result in bottom-up filling of voids and trenches with organic film in a manner otherwise difficult to achieve.
Owner:ASM IP HLDG BV

Metal silicide, metal germanide, methods for making the same

In one aspect, methods of silicidation and germanidation are provided. In some embodiments, methods for forming metal silicide can include forming a non-oxide interface, such as germanium or solid antimony, over exposed silicon regions of a substrate. Metal oxide is formed over the interface layer. Annealing and reducing causes metal from the metal oxide to react with the underlying silicon and form metal silicide. Additionally, metal germanide can be formed by reduction of metal oxide over germanium, whether or not any underlying silicon is also silicided. In other embodiments, nickel is deposited directly and an interface layer is not used. In another aspect, methods of depositing nickel thin films by vapor phase deposition processes are provided. In some embodiments, nickel thin films are deposited by ALD.
Owner:ASM INTERNATIONAL

Gas distribution system and method for distributing process gas in a processing system

An apparatus and related method for distributing process gas in a vapor deposition system is described. The gas distribution system includes a vertically movable piston within its plenum, and the movement of the piston controls the flow rate of process gas through the vapor distribution plate of the gas distribution system. The piston can be used to accommodate changes in processing parameters that affect flow characteristics and to create edge-enhanced, uniform, and center-enhanced profiles of deposited material on a substrate without the need to replace the vapor distribution plate.
Owner:TOKYO ELECTRON LTD

Gas distribution system and method for distributing process gas in a processing system

An apparatus and related method for distributing process gas in a vapor deposition system is described. The gas distribution system includes a vertically movable piston within its plenum, and the movement of the piston controls the flow rate of process gas through the vapor distribution plate of the gas distribution system. The piston can be used to accommodate changes in processing parameters that affect flow characteristics and to create edge-enhanced, uniform, and center-enhanced profiles of deposited material on a substrate without the need to replace the vapor distribution plate.
Owner:TOKYO ELECTRON LTD

Flowable silicon-carbon-nitrogen layers for semiconductor processing

Methods are described for forming a dielectric layer on a semiconductor substrate. The methods may include providing a silicon-containing precursor and an energized nitrogen-containing precursor to a chemical vapor deposition chamber. The silicon-containing precursor and the energized nitrogen-containing precursor may be reacted in the chemical vapor deposition chamber to deposit a flowable silicon-carbon-nitrogen material on the substrate. The methods may further include treating the flowable silicon-carbon-nitrogen material to form the dielectric layer on the semiconductor substrate.
Owner:APPLIED MATERIALS INC

Method and system for performing different deposition processes within a single chamber

A method, computer readable medium, and system for vapor deposition on a substrate that introduce a first process gas composition to a process space according to a first vapor deposition process, deposit a first film on the substrate, introduce a second process gas composition into a second process space different in size than the first process space, and deposit a second film on the substrate from the second process gas composition. As such, the system includes a process chamber including a first process space having a first volume. The process chamber further includes a second process space that includes at least a part of the first process space and that has a second volume different from the first volume. The first process space is configured for a first chemical vapor deposition, and the second process space is configured for a second chemical vapor deposition.
Owner:TOKYO ELECTRON LTD

Multiple deposition for integration of spacers in pitch multiplication process

Pitch multiplication is performed using a two step process to deposit spacer material on mandrels. The precursors of the first step react minimally with the mandrels, forming a barrier layer against chemical reactions for the deposition process of the second step, which uses precursors more reactive with the mandrels. Where the mandrels are formed of amorphous carbon and the spacer material is silicon oxide, the silicon oxide is first deposited by a plasma enhanced deposition process and then by a thermal chemical vapor deposition process. Oxygen gas and plasma-enhanced tetraethylorthosilicate (TEOS) are used as reactants in the plasma enhanced process, while ozone and TEOS are used as reactants in the thermal chemical vapor deposition process. The oxygen gas is less reactive with the amorphous carbon than ozone, thereby minimizing deformation of the mandrels caused by oxidation of the amorphous carbon.
Owner:ROUND ROCK RES LLC

Sequential UV induced chemical vapor deposition

Ion-induced, UV-induced, and electron-induced sequential chemical vapor deposition (CVD) processes are disclosed where an ion flux, a flux of ultra-violet radiation, or an electron flux, respectively, is used to induce the chemical reaction in the process. The process for depositing a thin film on a substrate includes introducing a flow of a first reactant gas in vapor phase into a process chamber where the gas forms an adsorbed saturated layer on the substrate and exposing the substrate to a flux of ions, a flux of ultra-violet radiation, or a flux of electrons for inducing a chemical reaction of the adsorbed layer of the first reactant gas to form the thin film. A second reactant gas can be used to form a compound thin film. The ion-induced, UV-induced, and electron-induced sequential CVD process of the present invention can be repeated to form a thin film of the desired thickness.
Owner:NOVELLUS SYSTEMS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products