Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2249 results about "Lanthanum oxide" patented technology

Lanthanum oxide, also known as lanthana, chemical formula La₂O₃, is an inorganic compound containing the rare earth element lanthanum and oxygen. It is used in some ferroelectric materials, as a component of optical materials, and is a feedstock for certain catalysts, among other uses.

Preparation of room temperature formaldehyde catalyst

Belonging to the technical field of adsorption catalysis and air pollution control, the invention relates to preparation of a room temperature formaldehyde catalyst. The invention is characterized in that: zeolite, sepiolite, a porous activated carbon material, cordierite or a self-made carrier is adopted as the catalyst carrier, one or more non-noble metal oxides, like magnesium oxide, aluminum oxide, silicon oxide, manganese oxide, iron oxide, cobalt oxide, nickel oxide, copper oxide, zinc oxide, zirconium oxide, lanthanum oxide or cerium oxide are taken as active components, and an impregnation technique is employed to prepare the catalyst, which can be powdery, strip, blocky, spherical or honeycomb. The loading amount of the non-noble metal oxides is 2-15wt%, and the content of the catalyst carrier is 85-98%. Under normal temperature and ambient humidity conditions, the catalyst has the capacity of catalytic oxidation of formaldehyde into non-toxic and harmless CO2 and H2O up to over 95%, no intermediate product is generated, and the catalyst has the characteristics of high catalytic oxidation activity, strong moisture resistant ability, stable operation, long service life and the like, thus being suitable for formaldehyde purification treatment in offices, office buildings, living rooms, shopping malls, hospitals, hotels and other places.
Owner:江苏瑞丰科技实业有限公司

Pyrolysis gasoline nickel system selective hydrogenation catalyst and preparation method thereof

The invention provides a pyrolysis gasoline nickel system selective hydrogenation catalyst and a preparation method of the pyrolysis gasoline nickel system selective hydrogenation catalyst and belongs to a catalyst containing metal or metal oxide or hydroxide. The pyrolysis gasoline nickel system selective hydrogenation catalyst is characterized by being provided with a mesopore-macropore or double-mesopore compound pore channel, taking aluminum oxide as a carrier, taking nickel as a main active component, taking molybdenum as an auxiliary active component and taking the metal oxide as an auxiliary agent; the pyrolysis gasoline nickel system selective hydrogenation catalyst is composed of following components in parts by weight: 15-19 parts of nickel oxide, 6.5-20 parts of molybdenum oxide, 2.2-4.5 parts of the auxiliary agent and the balance of the aluminum oxide; the auxiliary agent is one or the combination of more than two of potassium oxide, magnesium oxide and lanthanum oxide. The invention provides the pyrolysis gasoline nickel system selective hydrogenation catalyst which is large in pore capacity and high in specific surface, has good reaction activity, high hydrogenation reaction selectivity, good stability, good arsenic dissolving and glue resisting capabilities and is provided with the compound pore channel, and the preparation method of the pyrolysis gasoline nickel system selective hydrogenation catalyst. When the catalyst is used for selectively hydrogenating full-fraction pyrolysis gasoline, the average diene hydrogenation rate is 99%.
Owner:CHINA PETROLEUM & CHEM CORP

Periclase-magnesium aluminate spinel composite refractory brick and technique for producing the same

ActiveCN101412629AImprove corrosion resistanceSintering temperature matchingBrickCarboxylic acid
The invention relates to an alkaline composite refractory brick, which consists of a periclase-magnesium aluminate spinel flame retardant coating and a periclase-forsterite thermal-protective coating. The proportion of the alkaline composite refractory brick is as follows: 1) the proportion of the flame retardant coating is as follows: 29 to 48 percent of magnesite of between 5 and 1 millimeter, 7 to 16 percent of the magnesium aluminate spinel of between 3 and 1 millimeter, 6 to 20 percent of the magnesite of between 1 and 0.088 millimeter, 0 to 4 percent of desilicated zirconia granules of between 0.4 and 0.088 millimeter, 16 to 25 percent of the magnesite of less than 0.088 millimeter, 0 to 10 percent of magnesite micropowder of less than 0.020 millimeter, 0 to 5 percent of desilicated zirconia micropowder of less than 0.020 millimeter, 0 to 3 percent of calcium carbonate micropowder less than 0.020 millimeter, 0 to 6 percent of lanthanum oxide of less than 0.020 millimeter, and 0 to 0.3 percent of additional water reducing agent (sulfonated naphthaldehyde polymer, sulfonated melamine polymer and polycarboxylic acid or sodium salt thereof); and 2) the proportion of the thermal-protective coating is as follows: 0 to 20 percent of the magnesite of between 3.2 and 1.0 millimeter, 35 to 45 percent of the forsterite of between 3.2 and 1.0 meter, 5 to 15 percent of the magnesite of between 1.0 and 0.088 millimeter, 5 to 15 percent of the forsterite of between 1.0 and 0.088 millimeter, and 30 to 40 percent of grinding powder of the magnesite and the forsterite of less than 0.088 millimeter. The material has the advantages that the material improves the erosion resistance of the flame retardant coating by micropowder technology, and allows the sintering temperature of the flame retardant coating to be matched with that of the thermal-protective coating, thereby producing the periclase-magnesium aluminate spinel alkaline composite refractory brick which has excellent.
Owner:RUITAI MATERIALS TECHNOLOGY CO LTD +1

A silver tin/copper oxide compound electrical contact and preparation method

The invention relates to a silver tin oxide/copper compound electrical contact, a working layer of the electrical contact material is composed of silver, tin oxide and mixed rare earth oxide, the weight content of all the components is: 85 percent to 94 percent of Ag, 6 percent to 15 percent of SnO2 and 0.1 percent to 2.0 percent of mixed rare earth oxide, and a welding layer is T2 copper. The weight content of SnO2 is 8 to 12 percent preferentially. The mixed rare earth oxide is a mixture of cerium oxide, lanthanum oxide and yttrium oxide. The preparation method is that the silver and the tin are first mixed according to certain proportion and then are smelted in an intermediate frequency furnace, then high-pressure water atomization equipment is used for carrying out alloy atomization, powder is obtained by drying after the atomization, the powder is screened and arranged in an internal oxidation furnace to carry out the oxidation at certain temperature and oxygen pressure, then billet is obtained by the processing of isostatic cool pressing after the oxidation, after that, a plate is formed by carrying out the sintering and extruding, and finally the finished product is obtained by compound rolling with the copper. The electrical contact is characterized by high conductivity, even and exquisite texture, high bonding strength of the working layer and the welding layer, welding resistance and arc erosion resistance.
Owner:SHANGHAI LONGSUN ALLOY CO LTD

Preparation method for self-complement sub-micron crystal alumina ceramic

ActiveCN101343176APrecisely control the sintering regimeHigh hardnessSilicon oxideSlurry
The invention relates to a preparation method of a low-cost self-reinforced submicron grain alumina ceramic, which belongs to the fine ceramic field. The method comprises the steps of: adopting industrial aluminum hydroxide or boehmite as a raw material, adding fine grain Alpha-alumina and water for ball milling so as to obtain an even slurry; adding water for mixing at a temperature between 70 and 90 DEG C, and adding acid to control the pH value at 2 to 5, so as to form an emulsion; and adding an additive which is a mixture selected from one or more than two of zinc oxide, magnesium oxide, calcium oxide, yttrium oxide, lanthanum oxide, zirconium oxide, boric oxide, ferric oxide, vanadium oxide, silicon oxide or titanium oxide for forming a gel after water is evaporated, and drying the gel and then sintering the gel under high temperature for preparing the self-reinforced submicron grain alumina ceramic containing alumina elongated grains. The ceramic is characterized in that crystal grains have diameters of less than 0.5mu m, and a microstructure contains elongated alumina grains have length-diameter ratios of larger than 5, and has the advantages of high hardness, high toughness and good wear resistance, and can be widely used in ceramic grinding media and the abrasives industry.
Owner:SUZHOU CHUANGYUAN INVESTMENT DEV

Low-temperature sulfur-resistant denitration catalyst and preparation method thereof

The invention discloses a preparation method of a catalyst for removing NOx in coke oven tail gas through low-temperature sulfur-resistant catalytic reduction.The catalyst is prepared by taking titanium oxide as a carrier, taking one or two of cerium oxide, zirconia oxide and lanthanum oxide as an auxiliary, taking one or more than two of manganese oxide, cobalt oxide, copper oxide and ferric oxide as an active ingredient and adopting a precipitation-deposition method, wherein two or three of TiO2, ZrO2, CeO2, La2O2, MgO, CaO and BaO can be adopted as the carrier.In the low-temperature sulfur-resistant denitration catalyst, the loading quantity of the active ingredient is 5 wt%-20 wt%, and the loading quantity of the auxiliary is 0.5%-5%.According to the preparation method, the active ingredient prepared by achieving precipitation and deposition sodium carbonate and oxidizing and loading the active ingredient manganese dioxide through potassium permanganate is mainly distributed in the surface area of the carrier, and the dosage of the active ingredient can be effectively decreased.The catalyst is high in activity and sulfur poisoning resisting capacity and particularly suitable for catalytic removal of the NOx in the coke oven tail gas, and the denitration effect of the catalyst also can be expanded to the low-temperature denitration process of other tail gases.
Owner:GANSU TIANLANG CHEM TECH CO LTD +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products