Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

1537results about "Contacts" patented technology

Image controllers with sheet connected sensors

A sensor connecting sheet material for inclusion in appropriately structured multiple-axes controllers comprised of a single input member operable in 6 DOF relative to a reference member of the controller. The input member having return-to-center resiliency relative to the reference member on at least the three perpendicular linear axes. The input member can be of a continuously rotatable trackball-type or a limited rotation joystick-type, and the reference member can be a shaft, a base or a housing. The controllers include carriage structuring for influencing sheet connected sensors by hand-applied operation of the input member. The preferred structures provide cooperative interaction with movement or force influenced sensors in primarily a single area. Some, most, or all of the sensors are preferably supported on a generally single plane, such as on a printed flexible membrane sensor sheet or circuit board sheet. In an alternative embodiment, sensors and conductive traces are applied on a generally flat, flexible membrane sensor sheet, which is then bent into a three dimensional configuration which may in some cases reach a widely-spread 3-D constellation of 6 DOF and/or other sensor mountings. The use of sensors connected by a sheet member, whether finally applied in a flat or 3-D configuration, enables efficient circuit and sensor connection and placement during manufacture, resulting in low product costs and high reliability.

Picture element using microelectromechanical switch

A robust microelectromechanical switch. In an illustrative embodiment, the switch is adapted for use in a display and includes a first flexible surface and a second surface. The second surface is angled relative to the first surface, forming a wedge the first surface and the second surface. A first terminal and a second terminal are positioned relative to the first flexible surface and the second surface so that selective flexing of the flexible surface electrically couples or uncouples the first terminal to the second terminal. In a more specific embodiment, the switch further includes a first mechanism for selectively applying an electrostatic force between the first flexible surface and the second surface. The first surface is positioned on a first elastic flexible layer, and the second surface is positioned on a second layer. The first mechanism includes a first actuator electrode that is coupled to the first surface, and a second actuator electrode that is coupled to the second surface. A sufficient charge differential applied between the first actuator electrode and the second actuator electrode will attract the first electrode to the second electrode, thereby flexing the flexible layer toward the second layer. The sidewalls define a perimeter of a cell that houses the switch. A protrusion extends from a third layer between the sidewalls, thereby indenting the first layer, and thereby forming the wedge.

Fingerprint sensors using membrane switch arrays

A sensor for identifying fingerprints or other skin textures includes an array of cells each including a membrane switch. Each switch includes a fixed lower electrode disposed on a chip substrate, and a flexible membrane disposed over the lower electrode and capable of flexing downward to establish electrical contact between the lower electrode and an upper electrode. The upper electrode can form the membrane itself or a layer of the membrane, or can be attached to other membrane layers. Switches situated underneath skin ridges change state (e.g. are closed) by the applied pressure, while switches underneath skin valleys remain in their quiescent state (e.g. open). Adjacent switch chambers are connected by fluid tunnels which allow the passage of air between the chambers. Each chamber is substantially closed to the exterior of the sensor, such that particles from the environment cannot contaminate the switch contact surface defined between the switch electrodes. The cells are preferably not hermetically sealed, such that the pressure within the chamber interiors can stay equal to the external (atmospheric) pressure in varying environmental conditions. The membrane design of the cells according to the preferred embodiment allows improved sensor robustness, enhanced resistance to impact forces, decreased vulnerability to particle contamination, and reduced inter-cell crosstalk.

Data input device by detecting finger's moving and the input process thereof

Disclosed herein are a data input device and an input conversion method using the data input device. The data input device includes a detection unit provided in a predetermined input region, the detection unit processing first directional input that generates a first directional input signal through detection of lateral pressing in a predetermined radial direction by a finger placed at a reference location in the input region, second directional input that generates a second directional input signal through detection of vertical pressing in a predetermined direction in a state in which the finger is placed at the reference location, third directional input that generates a third directional input signal through detection of tilt pressing in a state in which the finger is placed at the reference location, and fourth directional input that generates a fourth directional input signal through detection of a tilt input in a state in which the finger is placed at the reference location; and a control unit configured to determine input locations of a lateral pressing direction, vertical pressing direction, tilt pressing direction and tilting direction of the finger, extract relevant data from memory, and input the extracted data; wherein the data is input through combination of two or more of the first to fourth directional inputs.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products