Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

4996results about "Conductive layers on insulating-supports" patented technology

Transparent conductive film and method for manufacturing the same

A ZnO-based transparent conductive film has practicable moisture resistance, desired characteristics of a transparent conductive film, and excellent economy. The transparent conductive film is produced by growing ZnO doped with a group III element oxide on a substrate and has a region with a crystal structure in which a c-axis grows along a plurality of different directions. The transparent conductive film produced by growing ZnO doped with a group III element oxide on a substrate has a ZnO (002) rocking curve full width at half maximum of about 13.5° or more.ZnO is doped with a group III element oxide so that the ratio of the group III element oxide in the transparent conductive film is about 7% to about 40% by weight.The transparent conductive film is formed on the substrate with a SiNx thin film provided therebetween.The transparent conductive film is formed on the substrate by a thin film formation method with a bias voltage applied to the substrate.
Owner:MURATA MFG CO LTD

Low temperature electronic vaporization device and methods

Low temperature electronic vaporization devices and method are described herein for emulating smoking wherein the devices generate an aerosol for inhalation by a subject by heating a viscous material that can have a tactile response in the mouth or respiratory tract.
Owner:JLI NAT SETTLEMENT TRUST

Highly catalytic screen-printing ink

The invention is directed to conductive polymer compositions, catalytic ink compositions (e.g., for use in screen-printing), electrodes produced by deposition of an ink composition, methods of making, and methods of using thereof. An exemplary ink material comprises platinum black and / or platinum-on-carbon as the catalyst, graphite as a conducting material, a polymer binding material, and an organic solvent. The polymer binding material is typically a copolymer of hydrophilic and hydrophobic monomers. The conductive polymer compositions of the present invention can be used, for example, to make electrochemical sensors. Such sensors can be used in a variety of analyte monitoring devices to monitor analyte amount or concentrations in subjects, for example, glucose monitoring devices to monitor glucose levels in subjects with diabetes.
Owner:LIFESCAN IP HLDG LLC +1

Transparent Planar Body and Transparent Touch Switch

The present invention provides a transparent planar body and a transparent touch switch that can improve visibility. Specifically, the transparent planar body (1) has a patterned transparent conductive film (12) on at least one surface of a transparent substrate (11). This transparent planar body (1) comprises a transmittance-adjusting layer for equalizing the transmission spectrum of light transmitted through a patterned region wherein the transparent conductive film (12) is provided via the transparent substrate (11) with that transmitted through a non-patterned region wherein the transparent conductive film (12) is not provided via the transparent substrate (11).
Owner:GUNZE LTD

Transparent Conductive Carbon Nanotube Film and a Method for Producing the Same

A transparent conductive film wherein carbon nanotubes are discursively embedded in the surface portion of a resin film is produced by (A) dispersing carbon nanotubes on a substrate surface, (B) forming a transparent resin film over the substrate on which the carbon nanotubes are dispersed, and then (C) separating the thus-formed resin film. This is a novel technique for realizing a highly transparent conductive film which is flexible and highly conductive even when amount of carbon nanotubes used therefor is small.
Owner:NAT INST OF ADVANCED IND SCI & TECH

Transparent carbon nanotube electrode using conductive dispersant and production method thereof

Disclosed is a transparent carbon nanotube (CNT) electrode using a conductive dispersant. The transparent CNT electrode comprises a transparent substrate and a CNT thin film formed on a surface the transparent substrate wherein the CNT thin film is formed of a CNT composition comprising CNTs and a doped dispersant. Further disclosed is a method for producing the transparent CNT electrode.The transparent CNT electrode exhibits excellent conductive properties, can be produced in an economical and simple manner by a room temperature wet process, and can be applied to flexible displays. The transparent CNT electrode can be used to fabricate a variety of devices, including image sensors, solar cells, liquid crystal displays, organic electroluminescence (EL) displays and touch screen panels, that are required to have both light transmission properties and conductive properties.
Owner:SAMSUNG ELECTRONICS CO LTD

Transparent conductive laminated body and touch panel

A transparent conductive laminated body comprising a transparent dielectric substance thin film having two layers and furthermore a transparent conductive thin film being formed on one face of a transparent film substrate with thickness of 2 to 120 mum, and a transparent substrate being adhered on another face of the film substrate through a transparent pressure sensitive adhesive layer, wherein a relationship of n3<n1<=n2 <n4 is satisfied where a light index of refraction of the film substrate is defined as n1, a light indexes of refraction of the two layers of the dielectric substance thin films are defined as n2 and n3 from the film substrate side respectively, and a light index of refraction of the conductive thin film is defined as n4 is excellent in transparency and scratch-proof property of the conductive thin film, and, moreover, excellent also in flexibility. A touch panel using the transparent conductive laminated body concerned has an improved dotting property.
Owner:NITTO DENKO CORP

Transparent conductive film and touch panel

A transparent conductive film (1) having a transparent plastic film (11) and a transparent conductive thin film (12) formed on at least one side thereof, characterized in that a resin layer (P) containing an ionic group in the range of 20 to 1000 eq / ton is provided between the transparent plastic film and the transparent conductive thin film and the ionic group containing resin has a cross-linked structure. The transparent conductive film has excellent adhesion to other conductive thin films and therefore exhibits excellent durability to input with a pen when used in touch panels.
Owner:TOYO TOYOBO CO LTD

Transparent conductive film and coating composition therefor

InactiveUS20060263588A1High transparencyImproved and well controllable electrical propertiesMaterial nanotechnologyConductive layers on insulating-supportsPolymer scienceCarbon fibers
The disclosed is a transparent conductive film that includes a matrix and carbon fibrous structures added to the matrix, wherein the carbon fibrous structures comprise carbon fibers, each having an outside diameter of 15-100 nm, and wherein the carbon fibrous structures each comprise a granular part at which two or more carbon fibers are bound to each other, and wherein the granular part is concurrently produced in a growth process for the carbon fibers. When the transparent conductive film is formed at a thickness of 0.1-5 μm on a glass substrate, it shows a surface resistivity of not more than 1.0×1012Ω / □, and a total light transmittance of not less than 30%. A coating composition for the conductive transparent film is prepared by using a media mill equipped with beads having an average diameter of 0.05-1.5 mm to disperse the carbon fibrous structures into the liquid resinous composition.
Owner:MITSUI & CO LTD +1

Silver nanowire-based transparent conductive thin film and preparation method thereof

The invention provides a silver nanowire-based transparent conductive thin film and a preparation method thereof. The preparation method is characterized by comprising the following steps of: forming a uniform adhesive layer on a substrate by organic polymer fluid; and forming a silver nanowire conductive layer on the adhesive layer, wherein silver nanowires can be firmly adhered to the adhesive layer. Through the adhesive layer, the firmness and the reliability of the silver nanowire transparent conductive thin film are greatly improved, the problem of easiness of falling of the silver nanowires is solved, and the selection range of the substrate is expanded. If the adhesive layer is formed by polyvinyl alcohol on a polymethyl methacrylate (PMMA) substrate, the visible light transmittance reaches 84 percent when square resistance is 130.
Owner:FUJIAN INST OF RES ON THE STRUCTURE OF MATTER CHINESE ACAD OF SCI

Low softening point glass composition, bonding material using same and electronic parts

A low softening point glass composition, which is substantially free from lead, bismuth and antimony and comprises oxides of vanadium, phosphorous, tellurium and iron, a softening point of the composition being 380° C. or lower.
Owner:RESONAC CORP

Polymer Compound And Polymer Light-Emitting Device Using The Same

High-molecular compounds comprising repeating units represented by the general formula (1) or (2) and having number-average molecular weights of 103 to 108 in terms of polystyrene: (1) [wherein Ar1 and Ar2 are each independently a trivalent aromatic hydrocarbon group or a trivalent heterocyclic group; and X1 and X2 are each independently O, S, C(═O), S(═O), SO2, C(R1)(R2), Si(R3)(R4), N(R5), B(R6), P(R7), or P(═O)(R8), with the provisos that X1 and X2 must not be the same and that X1 and Ar2 are bonded respectively to the adjacent carbon atoms constituting the aromatic ring of Ar1, and X2 and Ar1 are bonded respectively to the adjacent carbon atoms constituting the aromatic ring of Ar2] (2) [wherein Ar3 and Ar4 are each independently a trivalent aromatic hydrocarbon group or a trivalent heterocyclic group; and X3 and X4 are each independently N, B, P, C(R9), or Si(R10), with the provisos that X3 and X4 must not be the same and that X3 and Ar4 are bonded respectively to the adjacent carbon atoms constituting the aromatic ring of Ar3, and X4 and Ar3 are bonded respectively to the adjacent carbon atoms constituting the aromatic ring of Ar4].
Owner:SUMITOMO CHEM CO LTD

Touch sensible organic light emitting device

Embodiments of the present invention generally relate to a touch sensible organic light emitting device. The organic light emitting device according to an exemplary embodiment of the present invention comprises: a substrate; a thin film transistor disposed on the substrate; an organic light emitting element connected to the thin film transistor and receiving a data voltage; a plurality of encapsulation thin films disposed on the organic light emitting element, and encapsulating the thin film transistor and the organic light emitting element; a planarization layer disposed on the encapsulation thin film; and a touch sensor disposed on the planarization layer.
Owner:SAMSUNG DISPLAY CO LTD

Transparent conductive multi-layer structure, process for its manufacture, and device making use of transparent conductive multi-layer structure

A transparent conductive multi-layer structure having a smooth base material 1, a transparent conductive layer 2 formed on the smooth base material 1 by coating, an auxiliary electrode layer 3 formed in a pattern on the transparent conductive layer 2, and a transparent substrate 5 joined to the transparent conductive layer 2 and auxiliary electrode layer 3 through an adhesive layer 4. On a smooth peeled-off surface of the transparent conductive layer 2 from which the smooth base material 1 has been peeled off, various devices are formed to set up devices such as a dye-sensitized solar cell and an organic electroluminescent device.
Owner:SUMITOMO METAL MINING CO LTD

Graphene composite transparent electrode and preparation method and application thereof

The invention discloses a graphene composite transparent electrode and a preparation method of the graphene composite transparent electrode and application of the graphene composite transparent electrode. The graphene composite transparent electrode comprises a flexible transparent base plate. A graphene layer and a conductive macromolecule layer are arranged on the flexible transparent base plate. The preparation method of the graphene composite transparent electrode can be achieved by two ways, one way includes the steps that graphene is transferred to the flexible transparent base plate, and then conductive macromolecule materials coat the surface of graphene, and the other way includes the steps that firstly the conductive macromolecule materials coat the surface of the flexible transparent base plate, and then the graphene is transferred to the conductive macromolecule layer of the flexible transparent base plate. The graphene composite transparent electrode can be applied to manufacturing touch screens, solar cells, organic light emitting diodes, liquid crystal display screens, thin film transistors, flexible electronic products or wearable electronic products. The graphene composite transparent electrode takes the performance of electrical conductivity, light transmittance and flexibility into account and has the excellent photoelectric property and flexibility.
Owner:CHONGQING GRAPHENE TECH +1

Purification of metal nanostructures for improved haze in transparent conductors made from the same

Provided are a method of isolating and purifying metal nanowires from a crude and complex reaction mixture that includes relatively high aspect ratio nanostructures as well as nanostructures of low aspect ratio shapes, and conductive films made of the purified nanostructures.
Owner:CHAMP GREAT INTL

Conductive inks and manufacturing method thereof

The present invention relates to a variety of conductive ink compositions comprising a metal complex compound having a special structure and an additive and a method for preparing the same, more particularly to conductive ink compositions comprising a metal complex compound obtained by reacting a metal or metal compound with an ammonium carbamate- or ammonium carbonate-based compound and an additive and a method for preparing the same.
Owner:INKTEC CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products