Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

106 results about "Single-Walled Nanotube" patented technology

A carbon nanotube comprised of a single layer of graphitic carbon. These tubes may be metallic or semi-conducting depending on the chirality of the tube.

Process for producing single wall nanotubes using unsupported metal catalysts

A process for producing hollow, single-walled carbon nanotubes by catalytic decomposition of one or more gaseous carbon compounds by first forming a gas phase mixture carbon feed stock gas comprising one or more gaseous carbon compounds, each having one to six carbon atoms and only H, O, N, S or Cl as hetero atoms, optionally admixed with hydrogen, and a gas phase metal containing compound which is unstable under reaction conditions for said decomposition, and which forms a metal containing catalyst which acts as a decomposition catalyst under reaction conditions; and then conducting said decomposition reaction under decomposition reaction conditions, thereby producing said nanotubes.
Owner:HYPERION CATALYSIS INT

Controlled patterning and growth of single wall and multi-wall carbon nanotubes

Method and system for producing a selected pattern or array of at least one of a single wall nanotube and / or a multi-wall nanotube containing primarily carbon. A substrate is coated with a first layer (optional) of a first selected metal (e.g., Al and / or Ir) and with a second layer of a catalyst (e.g., Fe, Co, Ni and / or Mo), having selected first and second layer thicknesses provided by ion sputtering, arc discharge, laser ablation, evaporation or CVD. The first layer and / or the second layer may be formed in a desired non-uniform pattern, using a mask with suitable aperture(s), to promote growth of carbon nanotubes in a corresponding pattern. A selected heated feed gas (primarily CH4 or C2Hn with n=2 and / or 4) is passed over the coated substrate and forms primarily single wall nanotubes or multiple wall nanotubes, depending upon the selected feed gas and its temperature. Nanofibers, as well as single wall and multi-wall nanotubes, are produced using plasma-aided growth from the second (catalyst) layer. An overcoating of a selected metal or alloy can be deposited, over the second layer, to provide a coating for the carbon nanotubes grown in this manner.
Owner:NASA +1

Conductive thermoplastic compositions, methods of manufacture and articles derived from such compositions

Disclosed herein is an electrically conductive precursor composition comprising an organic polymer precursor; a single wall nanotube composition, wherein the single wall nanotube composition contains at least 0.1 wt % of production related impurities; and an optional nanosized conductive filler. A conductive composition comprises an organic polymer; a single wall nanotube composition, wherein the single wall nanotube composition contains at least 0.1 wt % of production related impurities; and a nanosized conductive filler.
Owner:SABIC INNOVATIVE PLASTICS IP BV

Catalytic growth of single- and double-wall carbon nanotubes from metal particles

Single-walled carbon nanotubes have been synthesized by the catalytic decomposition of both carbon monoxide and ethylene over a supported metal catalyst known to produce larger multi-walled nanotubes. Under certain conditions, there is no termination of nanotube growth, and production appears to be limited only by the diffusion of reactant gas through the product nanotube mat that covers the catalyst. The present invention concerns a catalyst-substrate system which promotes the growth of nanotubes that are predominantly single-walled tubes in a specific size range, rather than the large irregular-sized multi-walled carbon fibrils that are known to grow from supported catalysts. With development of the supported catalyst system to provide an effective means for production of single-wall nanotubes, and further development of the catalyst geometry to overcome the diffusion limitation, the present invention will allow bulk catalytic production of predominantly single-wall carbon nanotubes from metal catalysts located on a catalyst supporting surface.
Owner:RICE UNIV

Continuous fiber of single-wall carbon nanotubes

A method for purifying a mixture comprising single-wall carbon nanotubes and amorphous carbon contaminate is disclosed. The method includes the steps of heating the mixture under oxidizing conditions sufficient to remove the amorphous carbon, followed by recovering a product comprising at least about 80% by weight of single-wall carbon nanotubes. A method for producing tubular carbon molecules of about 5 to 500 nm in length is also disclosed. The method includes the steps of cutting single-wall nanotube containing-material to form a mixture of tubular carbon molecules having lengths in the range of 5-500 nm and isolating a fraction of the molecules having substantially equal lengths The nanotubes may be used, singularly or in multiples, in power transmission cables, in solar cells, in batteries, as antennas, as molecular electronics, as probes and manipulators, and in composites.
Owner:RICE UNIV

Direct synthesis of long single-walled carbon nanotube strands

Long, macroscopic nanotube strands or cables, up to several tens of centimeters in length, of aligned single-walled nanotubes are synthesized by the catalytic pyrolysis of n-hexane using an enhanced vertical floating catalyst CVD technique. The long strands of nanotubes assemble continuously from ropes or arrays of nanotubes, which are intrinsically long. These directly synthesized long nanotube strands or cables can be easily manipulated using macroscopic tools.
Owner:RENESSELAER POLYTECHNIC INST +1

Boron-Doped Single-Walled Nanotubes(SWCNT)

The present invention generally relates to methods and apparatus for the synthesis or preparation of boron-doped single-walled carbon nanotubes (B-SWCNTs). The invention provides a high yield, single step method for producing large quantities of continuous macroscopic carbon fiber from single-wall carbon nanotubes using inexpensive carbon feedstocks wherein the carbon nanotubes are produced by in situ boron substitutional doping. In one embodiment, the nanotubes disclosed are used, singularly or in multiples, in power transmission cables, in solar cells, in batteries, as antennas, as molecular electronics, as probes and manipulators, and in composites. It is another object of this invention to provide macroscopic carbon fiber made by such a method.
Owner:EKLUND PETER C

Coatings comprising carbon nanotubes and methods for forming same

An electrically conductive film is disclosed. According to one embodiment of the present invention, the film includes a plurality of single-walled nanotubes having a particular diameter. The disclosed film demonstrates excellent conductivity and transparency. Methods of preparing the film as well as methods of its use are also disclosed herein.
Owner:GLATKOWSKI PAUL J

Polymer-wrapped single wall carbon nanotubes

The present invention relates to new compositions of matter and articles of manufacture comprising SWNTs as nanometer scale conducting rods dispersed in an electrically-insulating matrix. These compositions of matter have novel and useful electrical, mechanical, and chemical properties including applications in antennas, electromagnetic and electro-optic devices, and high-toughness materials. Other compositions of matter and articles of manufacture are disclosed. including polymer-coated and polymer wrapped single-wall nanotubes (SWNTs), small ropes of polymer-coated and polymer-wrapped SWNTs and materials comprising same. This composition provides one embodiment of the SWNT conducting-rod composite mentioned above, and also enables creation of high-concentration suspensions of SWNTs and compatibilization of SWNTs with polymeric matrices in composite materials. This solubilization and compatibilization, in turn, enables chemical manipulation of SWNT and production of composite fibers, films, and solids comprising SWNTs.
Owner:RICE UNIV

Single wall nanotube composites

Methods for preparing composite materials containing carbon nanotubes and a matrix material are provided. Nanotube composite materials and electrical devices made using nanotube composite materials are also provided. Composite materials composed of nanotubes near the percolation threshold provide electrical conductivities greater than about 10−9 S / cm.
Owner:THE TRUSTEES OF THE UNIV OF PENNSYLVANIA

Capacitive based sensing of molecular adsorbates on the surface of single wall nanotubes

A sensing device having: a bottom electrode, a dielectric on the bottom electrode, a grid of nanoelectrodes on the dielectric, and a top electrode in electrical contact with the grid. A method of chemical or biological sensing comprising: providing a grid of nanoelectrodes; exposing the grid to fluid suspected of containing a chemical or biological analyte; and measuring a change in the capacitance and conductance of the grid.
Owner:THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY

Flame retardant polymer composites and method of fabrication

A flame retardant composite and a method for its fabrication are disclosed. The flame retardant composite shows both improved mechanical properties and flame retardancy. The composite comprises a matrix material and carbon nanotubes, such as single walled nanotubes, multi-walled nanotubes or fishbone-like graphitic cylinders, exhibiting a hollow core. For example, the outer diameters of the carbon nanofibers may be in the range from 1.2 to 500 nm. For example, a carbon nanotube may be incorporated as a layer in or on the surface of the composite. The method of fabrication of the composite may include a step of de-agglomeration.
Owner:C POLYMERS +1

Catalytic growth of single-wall carbon nanotubes from metal particles

Single-walled carbon nanotubes have been synthesized by the catalytic decomposition of both carbon monoxide and ethylene over a supported metal catalyst known to produce larger multi-walled nanotubes. Under certain conditions, there is no termination of nanotube growth, and production appears to be limited only by the diffusion of reactant gas through the product nanotube mat that covers the catalyst The present invention concerns a catalyst-substrate system which promotes the growth of nanotubes that are predominantly single-walled tubes in a specific size range, rather than the large irregular-sized multi-walled carbon fibrils that are known to grow from supported catalysts. With development of the supported catalyst system to provide an effective means for production of single-wall nanotubes, and further development of the catalyst geometry to overcome the diffusion limitation, the present invention will allow bulk catalytic production of predominantly single-wall carbon nanotubes from metal catalysts located on a catalyst supporting surface.
Owner:RICE UNIV

Carbon nanotube-polymer composite actuators

The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.
Owner:THE UNITED STATES AS REPRESENTED BY THE DEPARTMENT OF ENERGY

Method for fabricating macroscale films comprising multiple-walled nanotubes

A technique is provided for the fabrication of multi-walled carbon nanotube (MWNT) and carbon nanofiber (CNF) film materials. The method includes mixing a relatively small amount of single-walled nanotubes (SWNTs) with larger amounts of MWNTs and CNFs, which enables one to produce highly flexible SWNT materials—advantageously without the need for bonding agents and at significantly lower costs compared to flexible SWNT materials. The method exploits SWNTs tendency to entangle together to form flexible films, using a small amount of SWNTs to wrap around and entangle the larger diameter MWNTs and CNFs together to form flexible films with highly beneficial mechanical, electrical, and thermal properties at a fraction of the cost of SWNT materials.
Owner:FLORIDA STATE UNIV RES FOUND INC

Polymer composites containing nanotubes

The present invention relates to polymer composite materials containing carbon nanotubes, particularly to those containing singled-walled nanotubes. The invention provides a polymer composite comprising one or more base polymers, one or more functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers and carbon nanotubes. The invention also relates to functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers, particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having side chain functionalization, and more particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having olefin side chains and alkyl epoxy side chains. The invention further relates to methods of making polymer composites comprising carbon nanotubes.
Owner:ELTRON RES

Sensing devices from molecular electronic devices

The present invention generally relates to the fabrication of molecular electronics devices from molecular wires and Single Wall Nanotubes (SWNT). In one embodiment, the cutting of a SWNT is achieved by opening a window of small width by lithography patterning of a protective layer on top of the SWNT, followed by applying an oxygen plasma to the exposed SWNT portion. In another embodiment, the gap of a cut SWNT is reconnected by one or more difunctional molecules having appropriate lengths reacting to the functional groups on the cut SWNT ends to form covalent bonds. In another embodiment, the gap of a cut SWNT gap is filled with a self-assembled monolayer from derivatives of novel contorted hexabenzocoranenes. In yet another embodiment, a device based on molecular wire reconnecting a cut SWNT is used as a sensor to detect a biological binding event.
Owner:THE TRUSTEES OF COLUMBIA UNIV IN THE CITY OF NEW YORK

Method of forming nitrogen-doped single-walled carbon nanotubes

A method of forming nitrogen-doped or other Group V-doped single-walled nanotubes including: forming a catalyst metal layer on a substrate; loading a substrate having the catalyst metal layer into a reaction chamber; forming an H2O or other plasma atmosphere in a reaction chamber; and forming the nitrogen-doped or other Group V-doped carbon nanotubes on the catalyst metal layer by supplying a carbon or other Group IV precursor and a nitrogen or other Group V precursor into a reaction chamber where a chemical reaction therebetween is generated in the H2O or other plasma atmosphere.
Owner:SAMSUNG ELECTRONICS CO LTD

Carbon nanotube, a supported catalyst comprising the same, and fuel cell using the same

A carbon nanotube, a method of preparing the same, a supported catalyst including the same, and a fuel cell using the supported catalyst are provided. The method of preparing the carbon nanotube includes: depositing a metal catalyst in single wall nanotubes and growing multi wall nanotubes over the single wall nanotubes using the metal catalyst. The carbon nanotubes of the present invention have satisfactory specific surface area and low surface resistance. Thus, the carbon nanotubes perform remarkably better than a conventional catalyst carrier. Accordingly, the carbon nanotubes, when used as a catalyst carrier of an electrode for a fuel cell, can improve the electrical conductivity of the fuel cell. In addition, a fuel cell employing the electrode has excellent efficiency and overall performance.
Owner:SAMSUNG SDI CO LTD

Single wall nanotube constructs and uses therefor

The present invention provides soluble single wall nanotube constructs functionalized with a plurality of a targeting moiety and a plurality of one or more payload molecules attached thereto. The targeting moiety and the payload molecules may be attached to the soluble single wall carbon nanotube via a DNA or other oligomer platform attached to the single wall carbon nanotube. These soluble single wall carbon nanotube constructs may comprise a radionuclide or contrast agent and as such are effective as diagnostic and therapeutic agents. Methods provided herein are to diagnosing or locating a cancer, treating a cancer, eliciting an immune response against a cancer or delivering an anticancer drug in situ via an enzymatic nanofactory using the soluble single wall carbon nanotube constructs.
Owner:SLOAN KETTERING INST FOR CANCER RES

Method of producing single-walled carbon nanotubes

A method of producing a carbon nanotube product comprising a catalytic particle and single-walled carbon nanotubes deposited thereon. The catalytic particles preferably contain at least one metal from Group VIII, including for example Co, Ni, Ru, Rh, Pd, Ir, and Pt, and at least one metal from Group VIb including for example Mo, W and Cr. The catalytic particle preferably further comprises a support material such as silica. The carbon nanotube product is preferably formed by exposing the catalytic particle to a carbon-containing gas at a temperature sufficient to form the single-walled nanotubes as a primary portion of a solid carbon product on the catalytic particles.
Owner:THE BOARD OF RGT UNIV OF OKLAHOMA

Method and apparatus for synthesizing filamentary structures

Method and apparatus for producing filamentary structures. The structures include single-walled nanotubes. The method includes combusting hydrocarbon fuel and oxygen to establish a non-sooting flame and providing an unsupported catalyst to synthesize the filamentary structure in a post-flame region of the flame. Residence time is selected to favor filamentary structure growth.
Owner:MASSACHUSETTS INST OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products