Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

784 results about "Oragene" patented technology

Oragene is the trade name for DNA Genotek’s non-invasive DNA self-collection kit. Oragene allows the collection, stabilization and long term storage of DNA from saliva at ambient temperature. Oragene first became available to the genetic research community in 2004. Oragene is available in a variety of formats for various markets. In 2011, Oragene•Dx received 510(k) clearance from the U.S. Food and Drug Administration (FDA).

Polymers for analyte detection

The present invention generally relates to organic polymers able to participate in an analyte-recognition process, where an analyte facilitates an energy transfer between an energy donor and an energy acceptor. Certain embodiments of the invention make use of fluorescent conjugated polymers, such as poly(phenylene ethynylene)s and other polymers comprising pi-conjugated backbones. For example, one aspect of the invention provides a fluorescent conjugated polymer and an indicator that can interact with each other in the presence of an analyte to produce an emissive signal. In some cases, the interaction may include energy exchange mechanisms, such as Dexter energy transfer or the strong coupling effect. The interaction of the conjugated polymer and the indicator, in some instances, may be facilitated through specific interactions, such as a protein / carbohydrate interaction, a ligand / receptor interaction, etc. Another aspect of the invention provides for the detection of biological entities, for example, pathogenic bacteria such as E. coli, or viruses such as influenza virus. In some cases, biological recognition elements may be used to determine the biological entity, for instance, carbohydrates that can be used to specifically interact with at least part of the biological entity, such as a protein in the cell membrane of a bacterium. Still other aspects of the invention involve articles, devices, and kits using any of the above-described systems.
Owner:MASSACHUSETTS INST OF TECH

Method for the production of porous carbon-based molded bodies, and use thereof as cell culture carrier systems and culture systems

The present invention relates to methods for producing carbon-based molded bodies. In particular, the present invention relates to methods for producing porous carbon-based molded bodies by carbonizing organic polymer materials mixed with non-polymeric fillers and subsequently dissolving the fillers out from the carbonized molded bodies. The present invention further relates to methods for producing porous carbon-based molded bodies by carbonizing organic polymer materials mixed with non-polymeric fillers which are substantially completely decomposed during the carbonization. The present invention also relates to a method for producing porous carbon-based molded bodies by carbonizing organic polymer materials, the carbon-based molded bodies being partially oxidized following carbonization so as to produce pores. In addition, the present invention relates to porous molded bodies produced according to one of said methods and the use thereof, especially as cell culture carriers and / or culture systems.
Owner:CINVENTION AG

Organic solar cells including group IV nanocrystals and method of manufacture

An improved organic solar cell converts light into electricity. The organic solar cell includes a cathode, an anode, and a bulk heterojunction material disposed therebetween. The bulk heterojunction material includes a plurality of group IV nanocrystals (e.g., silicon nanocrystals) disposed within an organic absorber (e.g., an organic polymer).
Owner:EVERGREEN SOLAR

Conductive thermoplastic compositions, methods of manufacture and articles derived from such compositions

Disclosed herein is an electrically conductive precursor composition comprising an organic polymer precursor; a single wall nanotube composition, wherein the single wall nanotube composition contains at least 0.1 wt % of production related impurities; and an optional nanosized conductive filler. A conductive composition comprises an organic polymer; a single wall nanotube composition, wherein the single wall nanotube composition contains at least 0.1 wt % of production related impurities; and a nanosized conductive filler.
Owner:SABIC INNOVATIVE PLASTICS IP BV

Memory devices based on electric field programmable films

A composition for the formation of an electric field programmable film, the composition comprising a matrix precursor composition or a dielectric matrix material, wherein the dielectric matrix material comprises an organic polymer and / or a inorganic oxide; and an electron donor and an electron acceptor of a type and in an amount effective to provide electric field programming. The films are of utility in data storage devices.
Owner:RGT UNIV OF CALIFORNIA

Powder comprising silica-coated zinc oxide, organic polymer composition containing the powder and shaped article thereof

InactiveUS20060167138A1Help shapeSufficient UV shielding abilityPigmenting treatmentMaterial nanotechnologyMicroparticleSilicon dioxide
A powder comprising silica-coated zinc oxide fine particles in which the surface of each particle is coated with silica, wherein large particles of 5 μm or more account for 0.1 mass % or less. A powder comprising surface-hydrophobicized silica-coated zinc oxide fine particles in which the silica-coated zinc oxide fine particles whose surfaces have been coated with silica are further treated with a hydrophobicity-imparting agent, wherein large particles of 5 μm or more account for 0.1 mass % or less.
Owner:SHOWA DENKO KK

Process for concentration of macromolecules

The invention provides methods for concentrating a macromolecule from a solution comprising the macromolecule and an organic polymer by first subjecting the solution to ultrafiltration to produce a first retentate solution, then adjusting the conductivity of the first retentate solution such that any protein precipitation induced by the organic polymer is essentially prevented to produce a second retentate solution, and then subjecting the second retentate solution to ultrafiltration. In a preferred embodiment, the conductivity is adjusted by diafiltration against water, suitable diluent or buffer. Preferably, the invention pertains to the concentration of solutions of native or recombinant proteins. The invention further pertains preferably to methods for the concentration of cell culture supernatant comprising a product protein and organic polymers of the Pluronic family of block co-polymers, and more preferably comprising Pluronic F-68 block co-polymer.
Owner:BAYER HEALTHCARE LLC

Polymer-based memory element

Fuse-type and antifuse-type semiconducting-organic-polymer-film-based memory elements for use in memory devices are disclosed. Various embodiments of the present invention employ a number of different techniques to alter the electrical conductance or, equivalently, the resistance, of organic-polymer-film memory elements in order to produce detectable memory-state changes in the memory elements. The techniques involve altering the electronic properties of the organic polymers by application of heat or electric fields, often in combination with additional chemical compounds, to either increase or decrease the resistance of the organic polymers.
Owner:HEWLETT PACKARD DEV CO LP

Electrically conductive compositions and method of manufacture thereof

Disclosed herein is an electrically conductive composition comprising an organic polymer; and a carbon nanotube composition, wherein the carbon nanotube composition comprises carbon nanotubes that can rope and have greater than or equal to about 0.1 wt % production related impurities, based on the total weight of the carbon nanotube composition, and wherein the composition has a bulk volume resistivity less than or equal to about 1012 ohm-cm, and a notched Izod impact strength of greater than or equal to about 5 kilojoules / square meter.
Owner:SABIC INNOVATIVE PLASTICS IP BV

Hydrogen storage by reversible hydrogenation of pi-conjugated substrates

Processes are provided for the storage and release of hydrogen by means of a substantially reversible catalytic hydrogenation of extended pi-conjugated substrates which include large polycyclic aromatic hydrocarbons, polycyclic aromatic hydrocarbons with nitrogen heteroatoms, polycyclic aromatic hydrocarbons with oxygen heteroatoms, polycyclic aromatic hydrocarbons with alkyl, alkoxy, nitrile, ketone, ether or polyether substituents, pi-conjugated molecules comprising 5 membered rings, pi-conjugated molecules comprising six and five membered rings with nitrogen or oxygen hetero atoms, and extended pi-conjugated organic polymers. The hydrogen, contained in the at least partially hydrogenated form of the extended pi-conjugated system, can be facilely released for use by a catalytic dehydrogenation of the latter in the presence of a dehydrogenation catalyst which can be effected by lowering the hydrogen gas pressure, generally to pressures greater than 0.1 bar or raising the temperature to less than 250° C. or less, or by a combination of these two process parameters.
Owner:AIR PROD & CHEM INC

Preparation of organyloxysilyl-terminated polymers

The present invention relates to a process for preparing organyloxysilyl-terminated polymers which have increased stability toward atmospheric moisture, by reacting hydroxy-terminated organic polymers with isocyanato-functional silanes in the presence of at least one catalyst selected from the group consisting of bismuth and zinc compounds, and to crosslinkable compositions comprising such polymers.
Owner:WACKER CHEM GMBH

Solvent mixtures for an organic electronic device

An organic polymer solution is made of at least one organic polymer, a first solvent, and a second solvent. The first solvent has a high solubility (e.g., the first solvent dissolves at least about one weight percent of the organic polymers) and has a faster evaporation rate than the second solvent, and the second solvent has a very low solubility (e.g., the second solvent dissolves less than about one-fourth weight percent of the organic polymers). After the solution is deposited on an object, the solution is allowed to dry. As the solution dries, the first solvent due to its faster evaporation rate than the second solvent starts to evaporate from the solution, and soon after the first solvent starts to evaporate, the one or more organic polymers, due to its lower solubility in the second solvent, rapidly gels resulting in a substantially uniform organic polymer layer.
Owner:OSRAM OPTO SEMICONDUCTORS GMBH

Electrochemical device

An electrochemical device manufactured using an electrode layer in which severe increase of electrode resistance is prevented and / or a solid electrolyte layer in which severe decrease of ion conductivity of a solid electrolyte is prevented is provided. The electrochemical device includes a pair of electrode layers, and a solid electrolyte layer provided between the pair of electrode layers, wherein at least one layer of the electrode layers and the solid electrolyte layer is composed of first particles each providing a function of the at least one layer, second particles and a binder which is composed of an organic polymer and binds the first and second particles, and wherein the at least one layer is formed from a mixture material containing the first particles and binder particles, each of the binder particles including the second particle and the binder carried on at least a part of a surface thereof.
Owner:SEIKO EPSON CORP

Cleaning composition, method for cleaning semiconductor substrate, and process for manufacturing semiconductor device

The cleaning composition which comprises organic polymer particles (A) having a crosslinked structure and a surfactant (B) and is used after chemical mechanical polishing. The cleaning method of a semiconductor substrate is a method for cleaning semiconductor substrate given after chemical mechanical polishing, by the use of the cleaning composition. The process for manufacturing a semiconductor device including a step of chemically and mechanically polishing a semiconductor substrate and a step of cleaning the semiconductor substrate obtained after the chemical mechanical polishing, by the cleaning method.
Owner:JSR CORPORATIOON

Mixed matrix membranes with small pore molecular sieves and methods for making and using the membranes

A mixed matrix membrane is provided which comprises a continuous phase organic polymer and small pore molecular sieves dispersed therein. The molecular sieves have a largest minor crystallographic free diameter of 3.6 Angstroms or less. When these molecular sieves are properly interspersed with a continuous phase polymer, the membrane will exhibit a mixed matrix membrane effect, i.e., a selectivity increase of at least 10% relative to a neat membrane containing no molecular sieves. Finally, methods for making and using such mixed matrix membranes to separate gases from a mixture containing two or more gases are also disclosed.
Owner:CHEVROU USA INC

All-in-one water-borne inorganic-organic hybrid architectural coating and preparation method thereof

The invention relates to an all-in-one water-borne inorganic-organic hybrid architectural coating and a preparation method thereof, wherein the all-in-one water-borne inorganic-organic hybrid architectural coating is prepared by taking a compounded product of a water-borne inorganic film-forming matter and an organic polymer emulsion as a base material through the steps of adding various pigments / fillers and auxiliaries into the base material, then carrying out beating, grinding and paint mixing on the obtained mixture. In the invention, through a Si-O-Si polymer net structure which can be formed by compounding alkali metal silicates and small-particle-size silica sols in the process of film forming, the early water resistance of a paint film is greatly increased, and the eventual hardness, scraping resistance and stain resistance of the paint film are greatly increased; and through adding the organic polymer emulsion, the film-forming performance of the coating can be improved, and the defects that the traditional two-component inorganic coating is easy to crack, bad in decorative properties, poor in storage stability, and the like are overcome. The coating prepared by using the method disclosed by the invention has various functions of environmental friendliness, non-toxicity, thermal insulation, ultra scrubbing resistance, abrasion resistance, yellowing resistance, ageing resistance, fouling resistance, good air permeability, sound insulation, and the like.
Owner:SOUTH CHINA UNIV OF TECH

Flame retardant compositions

InactiveUS20040198875A1HydroxylaminePolyolefin
Organic polymeric substrates, for example polyolefins such as polypropylene, can be made flame retardant by the incorporation of a synergistic mixture of (i.) a sterically hindered amine of the nitroxyl, hydroxylamine, alkoxyamine or hydroxyalkoxyamine class, and (ii.) a fluorinated polyolefin. Advantageously, a further flame retardant may be added, without the need of adding an antimony synergist. The compositions of the invention combine good flame retardant properties with light stability and good mechanical properties.
Owner:CIBA SPECIALTY CHEM CORP

Inorganic matrix composition and composites incorporating the matrix composition

A modified alkali silicate composition for forming an inorganic network matrix. The modified alkali silicate matrix is made by reacting an alkali silicate (or its precursors such as an alkali hydroxide, a SiO2 source and water), an acidic inorganic composition, such as a reactive glass, water and optional fillers, additives and processing aids. An inorganic matrix composite can be prepared by applying a slurry of the modified aqueous alkali silicate composition to a reinforcing medium and applying the temperature and pressure necessary to consolidate the desired form. The composite can be shaped by compression molding as well as other known fabrication methods. A notable aspect of the invention is that, although composite and neat resin components prepared from the invention can exhibit excellent dimensional stability to 1000° C. and higher, they can be prepared at the lower temperatures and pressures typical to organic polymer processing.
Owner:THE BF GOODRICH CO

Pore forming material for porous body, manufacturing method of pore forming material for porous body, manufacturing method of porous body, porous body, and honeycomb structural body

The pore forming material for a porous body of the present invention comprises organic polymer particles and inorganic particles. As the embodiment thereof, there may be mentioned one having a structure in which the inorganic particles are contained in the organic polymer particles, and an aggregate body of the organic polymer particles and the inorganic particles. The inorganic particles may be inorganic micro-balloons, and the organic polymer particles may be organic micro-balloons.
Owner:IBIDEN CO LTD

Curing composition with improved heat resistance

The present invention provides a curable composition including: an organic polymer (A) which has on average 1.1 to 50 groups per one molecule thereof each represented by the general formula (1) and has one or more silicon-containing functional groups capable of cross-linking by forming siloxane bonds: —NR1—C(═O)—  (1) wherein R1 is a hydrogen atom, or a substituted or unsubstituted monovalent organic group; and a metal carboxylate and / or a carboxylic acid (B), the curable composition giving a cured article excellent in curability and also excellent in heat resistance although a non-organotin catalyst is used.
Owner:KANEKA CORP

Inorganic matrix compositions and composites incorporating the matrix composition

A modified alkali silicate composition for forming an inorganic network matrix. The modified alkali silicate matrix is made by reacting an alkali silicate (or its precursors such as an alkali hydroxide, a SiO2 source and water), an acidic inorganic composition, such as a reactive glass, water and optional fillers, additives and processing aids. An inorganic matrix composite can be prepared by applying a slurry of the modified aqueous alkali silicate composition to a reinforcing medium and applying the temperature and pressure necessary to consolidate the desired form. The composite can be shaped by compression molding as well as other known fabrication methods. A notable aspect of the invention is that, although composite and neat resin components prepared from the invention can exhibit excellent dimensional stability to 1000° C. and higher, they can be prepared at the lower temperatures and pressures typical to organic polymer processing.
Owner:THE BF GOODRICH CO

Curable composition

InactiveUS20050171315A1Small in curing variationSatisfactory in curabilityOther chemical processesCarboxylic acidMetallacarboxylic acid
The present invention provides a curable composition which has a high recovery ratio, a high creep resistance, a practical curability and a storage stability. The present invention relates to a curable composition comprising a reactive silicon group-containing organic polymer (A) and a carboxylic acid (B), (I) wherein the composition comprises, as the carboxylic acid (B), a carboxylic acid (C) in which the carbon atom adjacent to the carbonyl group is a quaternary carbon atom; and / or (II) wherein the composition comprises a metal carboxylate (D) formed between a carboxylic acid in which the carbon atom adjacent to the carbonyl group is a quaternary carbon atom and a metal atom of 208 or less in atomic weight.
Owner:KANEKA CORP

Fluorine silicon-modified acrylic ester emulsion and preparation method thereof

The invention discloses a fluorine silicon-modified acrylic ester emulsion and a preparation method thereof. The fluorine silicon-modified acrylic ester emulsion is a shell-core emulsion mainly prepared from a fluorine monomer, vinyl triisopropoxysilane, nano silica sol, a vinyl monomer, a long carbon chain monomer, an emulsifier, a pH buffer, an initiator, deionized water and the like. The fluorine monomer is delayed to be dripped during polymerization, so that the fluorine element is enriched on the surfaces of emulsion particles, the hydrophobic and oleophobic properties of fluorine elusion is given full play to, the use of the fluorine monomer is reduced, and the cost is reduced. The composition of inorganic silicon oxide particles and an organic polymer keeps the good film forming property of the polymer and has the weather resistance, high hardness and other characteristics of the inorganic matter, so as to improve the stain resistance of a varnish film.
Owner:SUN YAT SEN UNIV +1

Organic-inorganic hybrid particle material and polymer compositions containing same

Particulate materials useful as fillers, reinforcing agents, radioopacifiers, or impact modifiers. The particulate material has an average particle size range of about 10,000 nm or less and comprises an organic-inorganic hybrid material that has a ceramic material network having organic polymer segments distributed throughout the ceramic network. The ceramic network may be prepared by a sol-gel technique. The particulate material may be compounded in thermoplastic polymer compositions useful in a variety of applications such as preparation of medical device components.
Owner:BOSTON SCI SCIMED INC

Mixed matrix membranes with low silica-to-alumina ratio molecular sieves and methods for making and using the membranes

A mixed matrix membrane is provided which comprises a continuous phase organic polymer and small pore alumina containing molecular sieves dispersed therein. The molecular sieves have a silica-to-alumina molar ratio of less than 1.0, more preferably, less than 0.3, and most preferably less than 0.1. In some cases, the molecular sieves have no appreciable amounts of silica. Exemplary compositions include aluminophosphates (AlPO) and silicoaluminophosphates (SAPO). When these molecular sieves are properly interspersed with a continuous phase polymer, the membrane will exhibit a mixed matrix membrane effect, i.e., a selectivity increase of at least 10% relative to a neat membrane containing no molecular sieves. The molecular sieves have pores with a largest minor crystallographic free diameter of 4.0 Angstroms or less. Finally, methods for making and using such mixed matrix membranes to separate gases from a mixture containing two or more gases are also disclosed.
Owner:CHEVROU USA INC

Fused aerogel-polymer composite, methods of manufacture thereof and articles comprising the same

Disclosed herein is a method of preparing a fused aerogel-polymer composite in which aerogel and an organic polymer is mixed in a dry state to adsorb polymer particles on the surface of the aerogel and are then subjected to thermal treatment, thus forming a polymer coating on the aerogel. The fused aerogel-polymer composite can be used for thermal insulation in a variety of applications. The fused aerogel-polymer composite exhibits high thermal insulation properties and superior physical strength and processability while still maintaining the properties of an aerogel that does not have a polymer coated on its surface.
Owner:SAMSUNG ELECTRONICS CO LTD

Silsesquioxane derivative and process for producing the same

The PSQ silsesquioxane derivative of the invention is represented by Formula (1), and it may be utilized as additives to ordinary organic polymers for improving the flame retardancy, heat resistance, weather resistance, light resistance, electric insulating property, surface property, hardness, mechanical strength and chemical resistance thereof. In Formula (1), R is hydrogen, alkyl, aryl or arylalkyl; at least one Y is a group represented by Formula (2) and the other Y is hydrogen; in Formula (2), R1 and R2 are a group independently defined similarly to R; and Z is preferably a functional group, or a group having a functional group.
Owner:JNC CORP

Organic domain/inorganic domain complex materials and use thereof

Disclosed are an organic domain / inorganic domain hybrid material comprising an organic domain comprising at least one water-soluble organic polymer having anionic and / or cationic functional groups, and an inorganic domain, the organic and inorganic domains being chemically bonded to each other through the functional groups, the inorganic domain comprising inorganic bridges, each independently comprising at least one Si atom, at least two O atoms and at least one divalent metal atom, wherein the Si atom and the O atoms together form at least one siloxane linkage arranged longitudinally of the inorganic bridge, wherein each divalent metal atom is ionically bonded to the O atoms of the siloxane linkages positioned adjacent to the divalent metal atoms, wherein, when at least a part of the organic domain is comprised of at least one organic polymer having an anionic functional group and optionally a cationic functional group, the organic domain / inorganic domain weight ratio is less than 1.0; and the use thereof as a hydrophilicity reagent and an antibacterial / antifungal reagent.
Owner:ASAHI KASEI KK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products